Skip to main content
Log in

On the Nonexistence of Almost Moore Digraphs of Degree Four and Five

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

An almost Moore (d, k)-digraph is a regular digraph of degree \({d > 1}\), diameter \({k > 1}\) and order \({N(d, k) = d + d^{2} +\cdots + d^{k}}\). So far, their existence has only been showed for k = 2. Their nonexistence has been proved for k = 3, 4 and for d = 2, 3 when \({k \geq 3}\). In this paper, we prove that (4, k) and (5, k)-digraphs with self-repeats do not exist for infinitely many primes k.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baskoro E.T., Miller M., Plesník J.: On the structure of digraphs with order close to the Moore bound. Graphs Combin. 14, 109–119 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baskoro E.T., Miller M., Širáň J., Sutton M.: Complete characterisation of almost Moore digraphs of degree three. J. Graph Theory 48(2), 112–126 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bridges W.G., Toueg S.: On the impossibility of directed Moore graphs. J. Combin. Theory Ser. B 29, 339–341 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  4. Conde J., Gimbert J., González J., Miret J.M., Moreno R.: Nonexistence of almost Moore digraphs of diameter three. Electron. J. Combin. 15, #R87 (2008)

    Google Scholar 

  5. Conde J., Gimbert J., González J., Miret J.M., Moreno R.: Nonexistence of almost Moore digraphs of diameter four. Electron. J. Combin. 20(1), #P75 (2013)

    Google Scholar 

  6. Fiol, M.A., Alegre, I., Yebra, J.L.A.: Line digraphs iterations and the (d, k) problem for directed graphs. In: Proc. 10th Int. Symp. Comput. Arch., pp. 174–177. Stockholm (1983)

  7. Gimbert J.: On the existence of (d, k)-digraphs. Discret. Math. 197-198(1–3), 375–391 (1999)

    Article  MathSciNet  Google Scholar 

  8. Miller, M., Fris, I.: Maximum order digraphs for diameter 2 or degree 2. In: Pullman Volume of Graphs and Matrices, Lect. Notes Pure Appl. Math., vol. 139, pp. 269–278 (1992)

  9. Miller M., Gimbert J., Širáň J., Širáň J.: Almost Moore digraphs are diregular. Discret. Math. 218, 265–270 (2000)

    Article  MATH  Google Scholar 

  10. Miller, M., Širáň, J.: Moore graphs and beyond: a survey of the degree/diameter problem. Electron. J. Combin. 20(2), #DS14v2 (2013)

  11. Plesník J., Znám S.: Strongly geodetic directed graphs. Acta FRN Univ. Comen.-Math. XXIX, 29–34 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Miret.

Additional information

Research of the authors was supported in part by Grants MTM2013-46949-P (Spanish Ministerio de Ciencia e Innovación) and 2014SGR-1666 (Generalitat de Catalunya).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conde, J., Miller, M., Miret, J.M. et al. On the Nonexistence of Almost Moore Digraphs of Degree Four and Five. Math.Comput.Sci. 9, 145–149 (2015). https://doi.org/10.1007/s11786-015-0219-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-015-0219-z

Keywords

Mathematics Subject Classification