Skip to main content
Log in

Connectivity Spaces

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Connectedness is a fundamental property of objects and systems. It is usually viewed as inherently topological, and hence treated as derived property of sets in (generalized) topological spaces. There have been several independent attempts, however, to axiomatize connectedness either directly or in the context of axiom systems describing separation. In this review-like contribution we attempt to link these theories together. We find that despite differences in formalism and language they are largely equivalent. Taken together the available literature provides a coherent mathematical framework that is not only interesting in its own right but may also be of use in several areas of computer science from image analysis to combinatorial optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zitarelli D.E.: Connected sets and the AMS, 1901–1921. Notices AMS 56, 450–458 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Knaster B., Kuratowski K.: Sur les ensembles connexes. Fund. Math. 2, 206–256 (1921)

    MATH  Google Scholar 

  3. Mrówka S.G., Pervin W.J.: On uniform connectedness. Proc. Am. Math. Soc. 15, 446–449 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sieber J.L., Pervin W.J.: Connectedness in syntopogenous spaces. Proc. Am. Math. Soc. 15, 590–595 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Preuß G.: E-zusammenhängende Räume. Manuscripta Math. 3, 331–342 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  6. Császár Á.: Generalized open sets. Acta Math. Hungar. 75, 65–87 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  7. Császár Á.: γ-connected sets. Acta Math. Hungar. 101, 273–279 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duszyński Z.: On some concepts of weak connectedness of topological spaces. Acta Math. Hungar. 110, 81–90 (2006)

    Article  MathSciNet  Google Scholar 

  9. Shen R.-X.: A note on generalized connectedness. Acta Math. Hungar. 122, 231–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Krishna Murti S.B.: A set of axioms for topological algebra. J. Indian Math. Soc. 4, 116–119 (1940)

    MathSciNet  MATH  Google Scholar 

  11. Szymanski P.: La notion des ensembles séparés comme terme primitif de la topologie. Mathematica, Timisoara 17, 65–84 (1941)

    MathSciNet  MATH  Google Scholar 

  12. Wallace A.D.: Separation spaces. Ann. Math. 42, 687–697 (1941)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hammer P.C.: Extended topology: The Wallace functions of a separation. Nieuw Archief voor Wiskunde 9, 74–86 (1961)

    MATH  MathSciNet  Google Scholar 

  14. Hammer P.C.: Extended topology: Connected sets and Wallace separations. Portug. Math. 22, 167–187 (1963)

    MATH  MathSciNet  Google Scholar 

  15. Hammer P.C., Singletary W.E.: Connectedness-equivalent spaces on the line. Rend. Circ. Mat. Palermo 17, 343–355 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  16. Smirnov J.M.: On proximity spaces. Mat. Sb. 31, 543–574 (1952)

    MATH  MathSciNet  Google Scholar 

  17. Dimitrijević, R., Kočinac, L: (1987) On connectedness of proximity spaces. Mat. Vesnik 39

  18. Börger, R.: Connectivity spaces and component categories. In: Proceedings of the International Conference held at the University of Toledo, Ohio, USA. Categorical topology, vol. 5, Aug 1–5, pp. 71–89. Heldermann, Sigma Ser. Pure Math., 1983

  19. Muscat J., Buhagiar D.: Connective spaces. Mem. Fac. Sci. Eng. Shimane Univ. Series B: Math. Sci. 39, 1–13 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Dugowson S.: Les frontières dialectiques. Math. Soc. Sci. 177, 87–152 (2007)

    MathSciNet  Google Scholar 

  21. Serra J.: Mathematical morphology for Boolean lattices. Image Analysis and Mathematical Morphology, Theoretical Advances, vol. 2, pp. 50–58. Academic Press, New York (1988)

    Google Scholar 

  22. Ronse, C.: Openings: Main Properties, and How to Construct them. Tech. Rep. 10.1.1.21.9707, Citeseer (1992)

  23. Crespo J., Serra J., Schafer R.W.: Theoretical aspects of morphological filters by reconstruction. Signal Proces. 47, 201–225 (1995)

    Article  Google Scholar 

  24. Cupal J., Kopp S., Stadler P.F.: RNA shape space topology. Alife 6, 3–23 (2000)

    Google Scholar 

  25. Frank A., Király T., Kriesell M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discrete Appl. Math. 131, 373–383 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ronse C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imaging Vis. 8, 41–58 (1998)

    Article  MathSciNet  Google Scholar 

  27. Heijmans H.J.A.M.: Morphological Image Operators. Academic Press, New York (1994)

    MATH  Google Scholar 

  28. Matheron G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  29. Braga-Neto U.: Multiscale connected operators. J. Math. Image Vis 22, 199–216 (2005)

    Article  MathSciNet  Google Scholar 

  30. Najman, L., Talbot, H.: (eds) Mathematical Morphology. Wiley, New York, 2010

  31. Ptak, P., Kofler, H., Kropatsch, W.: Digital Topologies Revisited: An Approach Based on the Topological Point-Neighbourhood. Discrete Geometry for Computer Imagery, vol. 1347, pp. 151–159, Lect. Notes Comp. Sci. (1997)

  32. Banon, G.J.F.: New insight on digital topology. Mathematical Morphology and its Applications to Image and Signal Processing, Computational Imaging and Vision, vol. 18, pp. 139–148. Springer, New York (2000)

  33. Braga-Neto U., Goutsias J.: A theoretical tour of connectivity in image processing and analysis. J. Math. Imaging Vis. 19, 5–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Couprie, M., Bertrand, G.: Discrete topological transformations for image processing. Digital Geometry Algorithms, vol. 2, pp. 73–107, Lect. Notes Comp. Vision Biomech. (2012)

  35. Benkö G., Centler F., Dittrich P., Flamm C., Stadler B.M.R., Stadler P.F.: A topological approach to chemical organizations. Alife 15, 71–88 (2009)

    Google Scholar 

  36. Flamm, C., Stadler, B.M.R., Stadler, P.F.: Saddles and barriers in landscapes of generalized search operators. Foundations of Genetic Algortithms IX, Lecture Notes Comp. Sci., 2007. 9th International Workshop, FOGA, Jan 8–11, vol. 4436, pp. 194–212. Springer, Mexico (2007)

  37. Trouvé A.: Cycle decompositions and simulated annealing. SIAM J. Control Optim. 34, 966–986 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Flamm C., Hofacker I.L., Stadler P.F., Wolfinger M.T.: Barrier trees of degenerate landscapes. Z. Phys. Chem. 216, 155–173 (2002)

    Article  Google Scholar 

  39. Liefooghe, A., Paquete, L., Simões, M., Paquete, J.R.: Connectedness and local search for bicriteria knapsack problems. Evolutionary Computation in Combinatorial Optimization, Lect. Notes Comp. Sci., vol. 6622, pp. 48–59. Springer, New York (2011)

  40. Komiya H.: Minimax theorems in separation spaces. RIMS Kyoto Univ. 789, 1–7 (1992)

    Google Scholar 

  41. Ronse C.: Partial partitions, partial connections and connective segmentation. J. Math. Imaging Vis. 32, 97–125 (2008)

    Article  MathSciNet  Google Scholar 

  42. Erné M., Vainio R.: Connectivity in lattice-ordered spaces. Math. Nachr. 147, 13–28 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  43. Hammer P.C., Jones R.M.: Connected sets: Bases and metrics. Math. Syst. Theory 5, 282–288 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. Dugowson S.: On connectivity spaces. Cahier Top. Geom. Diff. Categ. 51, 282–315 (2010)

    MathSciNet  MATH  Google Scholar 

  45. Ronse C.: Idempotent block splitting on partial partitions, I: Isotone operators. Order 28, 273–306 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ronse C.: Idempotent block splitting on partial partitions, II: non-isotone operators. Order 28, 307–339 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ronse C.: Ordering partial partitions for image segmentation and filtering: Merging, creating and inflating blocks. J. Math. Imaging Vis. 49, 202–233 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Császár, Á.: Foundations of General Topology. Pergamon Press, Oxford (1963)

  49. Császár, K.: Separation and connectedness. Proceedings of the fourth Prague topological symposium, pp. 90–94. Society of Czechoslovak Mathematicians and Physicists (1977)

  50. Steiner E.F.: The relation between quasi-proximities and topological spaces. Math. Ann. 155, 194–195 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  51. Riesz F.: Stetigkeit und abstrakte Mengenlehre. Rom. Math. Kongr 4(2), 18–24 (1909)

    MATH  Google Scholar 

  52. Davey B.A., Priestley H.A.: Introduction to Lattice and Order. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  53. Pervin W.J.: On separation and proximity spaces. Am. Math. Monthly 71, 158–161 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  54. Mattson D.A.: Separation relations and quasi-proximities. Math. Ann. 171, 87–92 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  55. Harris, J.M.: Continuity and separation for point-wise symmetric isotonic closure functions. Tech. Rep. arXiv:math.GN/0507230 (2005)

  56. Kuratowski K.: Sur l’operation de l’analysis situs. Fund. Math. 3, 182–199 (1922)

    MATH  Google Scholar 

  57. Habil E.D., Elzenati K.A.: Connectedness in isotonic spaces. Turk. J. Math 30, 247–262 (2006)

    MathSciNet  MATH  Google Scholar 

  58. Császár, Á.: Generalized open sets in generalized topologies. Acta Math. Hungar. 103, 53–66 (2005)

  59. El-Atik A.A., Abu Donia H.M., Salama A.S.: On b-connectedness and b-disconnectedness and their applications. J. Egypt. Math. Soc. 21, 63–67 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Chattopadhyay K.C.: Not every Lodato proximity is covered. Pacific J. Math. 118, 59–62 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. Thron W.J., Warren R.H.: On the lattice of proximities of Čech compatible with a given closure space. Pacific J. Math. 42, 519–535 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Kuratowski K.: Topology, vol. II. Academic Press, New York (1968)

    Google Scholar 

  63. Di Concilio, A.: Proximity: a powerful tool in extension theory, functions spaces, hyperspaces, boolean algebras and point-free geometry. Beyond Topology, vol. 486, pp. 89–114. Am. Math. Soc., AMS Contemporary Mathematics (2009)

  64. Isaacs R.: Separaciones de Wallace: Otra aproximación a la topología. Rev. Integr. Dept. Math. UIS 6, 25–32 (1988)

    MathSciNet  Google Scholar 

  65. Lodato M.W.: On topologically induced generalized proximity relations. Proc. Am. Math. Soc. 15, 417–422 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  66. Naimpally, S.: Proximity Approach to Problems in Topology and Analysis. Oldenburg, München (2009)

  67. Haralick R.M., Shapiro L.G.: Computer and Robot Vision, vol. 1. Addison-Wesley, Reading (1992)

    Google Scholar 

  68. Malitza M.: Topology, binary relations, and internal operations. Rev. Roumaine Math. Pures Appl. 4, 515–519 (1975)

    MathSciNet  MATH  Google Scholar 

  69. Calude C., Căzănescu V.E.: On topologies generated by Mosil resemblance relations. Discr. Math. 25, 109–115 (1979)

    Article  MATH  Google Scholar 

  70. Alexandroff P.: Diskrete Räume. Math. Sb. (N.S.) 2, 501–518 (1937)

    MATH  Google Scholar 

  71. Efremovič V.: The geometry of of proximity. Mat. Sb. 31, 189–200 (1952)

    MathSciNet  Google Scholar 

  72. Di Maio G., Naimpally S.: d-proximity spaces. Czech. Math. J. 41, 232–248 (1991)

    MathSciNet  MATH  Google Scholar 

  73. Stadler, B.M.R., Stadler, P.F.: Generalized topological spaces in evolutionary theory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42, 577–585 (2002)

  74. Stadler B.M.R., Stadler P.F.: Higher separation axioms in generalized closure spaces. Commentationes Math. Warszawa, Ser. I 43, 257–273 (2003)

    MathSciNet  MATH  Google Scholar 

  75. Serra J.: Connectivity on complete lattices. J. Math. Imag. Vis. 9, 231–251 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  76. Wilkinson, M.H.F.: An axiomatic approach to hyperconnectivity. ISMM 2009, vol. 5720, pp. 35–46. Lect. Notes Comp. Sci. (2009)

  77. Stadler B.M.R., Stadler P.F., Wagner G.P., Fontana W.: The topology of the possible: formal spaces underlying patterns of evolutionary change. J. Theor. Biol. 213, 241–274 (2001)

    Article  MathSciNet  Google Scholar 

  78. Ronse C.: Axiomatics for oriented connectivity. Pattern Recognition Let. 47, 120–128 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Stadler.

Additional information

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) Project STA850/11-1 within the EUROCORES Programme EuroGIGA (project GReGAS) of the European Science Foundation and Project STA 850/14-1 within SPP 1590 “Probabilistic Structures in Evolution”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stadler, B.M.R., Stadler, P.F. Connectivity Spaces. Math.Comput.Sci. 9, 409–436 (2015). https://doi.org/10.1007/s11786-015-0241-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-015-0241-1

Keywords

Mathematics Subject Classification

Navigation