Skip to main content
Log in

Sixty Years of Network Reliability

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

The study of network reliability started in 1956 with a groundbreaking paper by E.F. Moore and C.E. Shannon. They introduced a probabilistic model of network reliability, where the nodes of the network were considered to be perfectly reliable, and the links or edges could fail independently with a certain probability. The problem is to determine the probability that the network remains connected under these conditions. If all the edges have the same probability of failing, this leads to the so-called reliability polynomial of the network. Sixty years later, a lot of research has accumulated on this topic, and many variants of the original problem have been investigated. We review the basic concepts and results, as well as some recent developments in this area, and we outline some important research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., et al.: The resilience of WDM networks to probabilistic geographical failures. IEEE/ACM Trans. Netw. 21(5), 1525–1538 (2013)

    Article  Google Scholar 

  2. Amin, A.T., Siegrist, K.T., Slater, P.J.: On the nonexistence of uniformly optimal graphs for pair-connected reliability. Networks 21(3), 359–368 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amin, A.T., Siegrist, K.T., Slater, P.J.: On uniformly optimally reliable graphs for pairconnected reliability with vertex failures. Networks 23(3), 185–193 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, I.: Combinatorics of Finite Sets. Dover Books on Mathematics. Dover, New York (1987). ISBN: 9780486422572

    MATH  Google Scholar 

  5. Ball, M.O., Scott Provan, J.: Bounds on the reliability polynomial for shellable independence systems. SIAM J. Algebr. Discrete Methods 3(2), 166–181 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ball, M.O., Scott Provan, J.: Calculating bounds on reachability and connectedness in stochastic networks. Networks 13(2), 253–278 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrera, J., Cancela, H., Moreno, E.: Topological optimization of reliable networks under dependent failures. Oper. Res. Lett. 43(2), 132–136 (2015)

    Article  MathSciNet  Google Scholar 

  8. Boesch, F.T.: On the synthesis of optimally reliable networks having unreliable nodes but reliable edges. In: INFOCOM ’88. Networks: Evolution or Revolution, Proceedings of the Seventh Annual Joint Conference of the IEEE Computer and Communcations Societies, pp. 829–834. IEEE (1988)

  9. Brecht, T.B., Colbourn, C.J.: Lower bounds on two-terminal network reliability. Discrete Appl. Math. 21(3), 185–198 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brown, J., Mol, L.: On the roots of the node reliability polynomial. Networks 68(3), 238–246 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brown, J.I., Cox, D., Ehrenborg, R.: The average reliability of a graph. Discrete Appl. Math. 177, 19–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brown, J.I., Li, X.: Uniformly optimal digraphs for strongly connected reliability. Networks 49(2), 145–151 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bulka, D., Dugan, J.B.: A lower bound on the reliability of an n-dimensional hypercube. In: Proceedings Ninth Symposium on Reliable Distributed Systems, pp. 44–53 (1990)

  14. Bulka, D., Dugan, J.B.: Network s–t reliability bounds using a 2-dimensional reliability polynomial. IEEE Trans. Reliab. 43(1), 39–45 (1994)

    Article  Google Scholar 

  15. Burgos, J.M.: Factorization of network reliability with perfect nodes II: connectivity matrix. Discrete Appl. Math. 198, 91–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Burgos, J.M., Amoza, F.R.: Factorization of network reliability with perfect nodes I: introduction and statements. Discrete Appl. Math. 198, 82–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Canale, E., et al.: Diameter constrained reliability: complexity, distinguished topologies and asymptotic behavior. Networks 66(4), 296–305 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Canale, E., et al.: Full complexity analysis of the diameter-constrained reliability. Int. Trans. Oper. Res. 22(5), 811–821 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cancela, H., et al.: Diameter constrained reliability of ladders and Spanish fans. Yugosl. J. Oper. Res. 26(1), 17–32 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, Y., He, Z.: Bounds on the reliability of distributed systems with unreliable nodes and links. IEEE Trans. Reliab. 53(2), 205–215 (2004)

    Article  Google Scholar 

  21. Colbourn, C.J.: Edge-packing of graphs and network reliability. Discrete Math. 72(1), 49–61 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colbourn, C.J.: Network resilience. SIAM J. Algebr. Discrete Methods 8(3), 404–409 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Colbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, New York (1987). ISBN 0-19-504920-9

    Google Scholar 

  24. Colbourn, C.J., Harms, D.D., Myrvold, W.J.: Reliability polynomials can cross twice. J. Frankl. Inst. 330(3), 629–633 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423(1), 53–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Doty, L.L.: Extremal connectivity and vulnerability in graphs. Networks 19(1), 73–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dugas, M.R., Samaniego, F.J.: On optimal system designs in reliability-economics frameworks. Nav. Res. Logist. 54(5), 568–582 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. El-Amawy, A., Latifi, S.: Properties and performance of folded hypercubes. IEEE Trans. Parallel Distrib. Syst. 2(1), 31–42 (1991)

    Article  Google Scholar 

  29. Ellens, W., et al.: Effective graph resistance. Linear Algebra Appl. 435(10), 2491–2506 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Elspas, B.: Topological constraints on interconnection-limited logic. In: 1964 Proceedings of the Fifth Annual Symposium on Switching Circuit Theory and Logical Design, pp. 133–137 (1964)

  31. Evans, T., Smith, D.: Optimally reliable graphs for both edge and vertex failures. Networks 16(2), 199–204 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frank, O., Gaul, W.: On reliability in stochastic graphs. Networks 12(2), 119–126 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gertsbakh, I., Shpungin, Y., Vaisman, R.: Ternary Networks: Reliability and Monte Carlo. Springer, Berlin (2014). ISBN 3319064398

    Book  MATH  Google Scholar 

  34. Gertsbakh, I.B., Shpungin, Y.: Models of Network Reliability: Analysis, Combinatorics, and Monte Carlo, 1st edn. CRC Press, Boca Raton (2009). ISBN: 1439817413

    MATH  Google Scholar 

  35. Gertsbakh, I.B., Shpungin, Y.: Network Reliability and Resilience. Springer, Berlin (2011). ISBN 978-3-642-22373-0

    Book  MATH  Google Scholar 

  36. Goldschmidt, O., Jaillet, P., Lasota, R.: On reliability of graphs with node failures. Networks 24(4), 251–259 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gross, D.J., Saccoman, J.T., Suffel, C.L.: Spanning Tree Results for Graphs and Multigraphs: A Matrix-Theoretic Approach. World Scientific, Singapore (2014). ISBN: 9789814566056

    Book  MATH  Google Scholar 

  38. Gunawan, I.: Fundamentals of Reliability Engineering: Applications in Multistage Interconnection Networks. Wiley, New York (2014). ISBN: 978-1-118-54956-8

    Book  Google Scholar 

  39. Guo, L., Guo, X.: Fault tolerance of hypercubes and folded hypercubes. J. Supercomput. 68(3), 1235–1240 (2014)

    Article  Google Scholar 

  40. Harms, D.D., et al.: Network Reliability. Experiments with a Symbolic Algebra Environment. CRC Press, Boca Raton (1995). ISBN: 0-8493-3980-4

    MATH  Google Scholar 

  41. Hu, X.D., Hwang, F.K.: Reliabilities of chordal rings. Networks 22(5), 487–501 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Hu, X.D., Hwang, F.K.: Survival reliabilities of double loop networks. In: Global Telecommunications Conference, 1990, and Exhibition. ‘Communications: Connecting the Future’ (GLOBECOM’90), vol.2, pp. 674–677. IEEE (1990)

  43. Hu, X.D., Hwang, F.K., Li, W.-C.I.W.: Most reliable double loop networks in survival reliability. Networks 23(5), 451–458 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hwang, F.K., Wright, P.E.: Survival reliability of some double-loop networks and chordal rings. IEEE Trans. Comput. 44(12), 1468–1471 (1995)

    Article  MATH  Google Scholar 

  45. Hwang, F.K.: A survey on multi-loop networks. Theoret. Comput. Sci. 299(1), 107–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Hwang, F.K., Li, W.-C.W.: Reliabilities of double-loop networks. Probab. Eng. Inf. Sci. 5(3), 255272 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Hwang, F.K., Wright, P.E., Hu, X.D.: Exact reliabilities of most reliable double-loop networks. Networks 30(2), 81–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Jukna, S.: Extremal Combinatorics: With Applications in Computer Science. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2001). ISBN 9783540663133

    Book  MATH  Google Scholar 

  49. Karp, R.M., Luby, M.: Monte-Carlo algorithms for the planar multiterminal network reliability problem. J. Complex. 1(1), 45–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  50. Katerinis, P.: Toughness of graphs and the existence of factors. Discrete Math. 80(1), 81–92 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kelmans, A.: Connectivity of probabilistic networks. Autom. Remote Control 29, 444–460 (1967)

    MathSciNet  Google Scholar 

  52. Kelmans, A.: Some problems of network reliability analysis. Autom. Remote Control 26, 564–573 (1965)

    Google Scholar 

  53. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. 148, 497–508 (1847)

    Article  Google Scholar 

  54. Kuo, S.Y., Yeh, F.M., Lin, H.Y.: Efficient and exact reliability evaluation for networks with imperfect vertices. IEEE Trans. Reliab. 56(2), 288–300 (2007)

    Article  Google Scholar 

  55. Liu, S., Cheng, K.-H., Liu, X.: Network reliability with node failures. Networks 35(2), 109–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Long, X., Tipper, D., Gomes, T.: Measuring the survivability of networks to geographic correlated failures. In: Optical Switching and Networking 14, Part 2 (2014). Special Issue on RNDM, pp. 117–133 (2013)

  57. McAssey, M.P., Samaniego, F.J.: On uniformly optimal networks: a reversal of fortune? Commun. Stat. Theory Methods 43(10–12), 2452–2467 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mohamed, M.H.S., et al.: An efficient evaluation for the reliability upper bound of distributed systems with unreliable nodes and edges. Int. J. Eng. Technol. 2(2), 107–110 (2010)

    Google Scholar 

  59. Monakhova, E.A.: A survey on undirected circulant graphs. In: Discrete Mathematics, Algorithms and Applications 04.01 (2012), p. 1250002

  60. Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays. J. Frankl. Inst. 262(3), 191–208 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  61. Myrvold, W.: Reliable network synthesis: some recent developments. In: Proceedings of International Conference on Graph Theory, Combinatorics, Algorithms, and Applications. vol. 2, pp. 651–660 (1999)

  62. Page, L.B., Perry, J.E.: A practical implementation of the factoring theorem for network reliability. IEEE Trans. Reliab. 37(3), 259–267 (1988)

    Article  Google Scholar 

  63. Petingi, L., Rodriguez, J.: Reliability of networks with delay constraints. Congr. Numer. 152, 117–123 (2001)

    MathSciNet  MATH  Google Scholar 

  64. Peyrat, C.: Diameter vulnerability of graphs. Discrete Appl. Math. 9(3), 245–250 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  65. Politof, T., Satyanarayana, A.: A linear-time algorithm to compute the reliability of planar cube-free networks. IEEE Trans. Reliab. 39(5), 557–563 (1990)

    Article  MATH  Google Scholar 

  66. Politof, T., Satyanarayana, A.: Efficient algorithms for reliability analysis of planar networks—a survey. IEEE Trans. Reliab. 35(3), 252–259 (1986)

    Article  MATH  Google Scholar 

  67. Provan, S.J.: The complexity of reliability computations in planar and acyclic graphs. SIAM J. Comput. 15(3), 694–702 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  68. Rodriguez-Velazquez, J.A., Kamisalic, A., Domingo-Ferrer, J.: On reliability indices of communication networks. Comput. Math. Appl. 58(7), 1433–1440 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. Samaniego, F.J.: System Signatures and their Applications in Engineering Reliability. International Series on Operations Research and Management Science. Springer, Berlin (2007). ISBN: 978-0-387-71797-5

    Book  MATH  Google Scholar 

  70. Satyanarayana, A., Chang, M.K.: Network reliability and the factoring theorem. Networks 13(1), 107–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  71. Satyanarayana, A., Tindell, R.: Efficient Algorithms for the Evaluation of Planar Network Reliability. Tech. rep. DTIC Document (1993). http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA263602

  72. Satyanarayana, A., KevinWood, R.: A linear-time algorithm for computing K-terminal reliability in series-parallel networks. SIAM J. Comput. 14(4), 818–832 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  73. Shier, D.R.: Network Reliability and Algebraic Structures. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  74. Shpungin, Y.: Networks with unreliable nodes and edges: Monte Carlo lifetime estimation. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 1(3):458–463. (2007). ISSN: 2010-376X

  75. Smith, D.H.: Optimally reliable graphs for both vertex and edge failures. Comb. Probab. Comput. 2(1), 93100 (1993)

    Article  MathSciNet  Google Scholar 

  76. Smith, D.H.: Optimally reliable networks. Ann. Oper. Res. 33(2), 107–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  77. Smith, D.H., Doty, L.L.: On the construction of optimally reliable graphs. Networks 20(6), 723–729 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  78. Soh, S., Rai, S., Trahan, J.L.: Improved lower bounds on the reliability of hypercube architectures. IEEE Trans. Parallel Distrib. Syst. 5(4), 364–378 (1994)

    Article  Google Scholar 

  79. Theologou, O.R., Carlier, J.G.: Factoring and reductions for networks with imperfect vertices. IEEE Trans. Reliab. 40(2), 210–217 (1991)

    Article  MATH  Google Scholar 

  80. Tripathy, C.R., Mahapatra, R.N., Misra, R.B.: Reliability analysis of hypercube multicomputers. Microelectron. Reliab. 37(6), 885–891 (1997)

    Article  Google Scholar 

  81. Van Slyke, R.M., Frank, H.: Network reliability analysis: part I. Networks 1, 279–290 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  82. Vertigan, D.: The computational complexity of tutte invariants for planar graphs. SIAM J. Comput. 35(3), 690–712 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. Wood, R.K.: Factoring algorithms for computing k-terminal network reliability. IEEE Trans. Reliab. 35(3), 269–278 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  84. Yu, S., Shao, F.-M., Meng, H.: Uniformly optimal graphs in some classes of graphs with node failures. Discrete Math. 310(1), 159–166 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  85. Zhou, Q., et al.: Network Robustness under Large-Scale Attacks. Springer, Berlin (2013). ISBN: 978- 1-4614-4859-4

    Book  MATH  Google Scholar 

  86. Zhu, Q., et al.: On reliability of the folded hypercubes. Inf. Sci. 177(8), 1782–1788 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This paper has grown out of the lectures given at the CIMPA Research School on Mathematical Models for Security Applications, held in Havana, Cuba, from Aug. 29 to Sep. 9, 2016. The author wishes to thank the organizers of the school: Christian Maduit, from CIMPA, Josep M. Miret, from the University of Lleida, Luis R. Piñeiro and Valentina Badia at the University of Havana, as well as the Dept. of Mathematics, University of Lleida, for the support given to the school, in general, and to this author in particular. The author has also been partially supported by Project MTM2013-46949-P, from the Spanish Ministry of Economy and Competitiveness. Professors Charles Colbourn, Dirk Vertigan and Ilya Gertsbakh have provided some useful pointers to the literature, and have kindly answered some questions related to their work. Special thanks are given to the guest editors for their work, and to the reviewers, who made suggestions that have led to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebert Pérez-Rosés.

Additional information

In loving memory of Prof. Mirka Miller (1949–2016).

This paper has grown out of the lectures given at the CIMPA Research School on Mathematical Models for Security Applications, held in Havana, Cuba, from Aug. 29 to Sep. 9, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Rosés, H. Sixty Years of Network Reliability. Math.Comput.Sci. 12, 275–293 (2018). https://doi.org/10.1007/s11786-018-0345-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0345-5

Keywords

Mathematics Subject Classification

Navigation