Skip to main content
Log in

Boolean Functions: Degree and Support

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

In this paper we establish some properties about Boolean functions that allow us to relate their degree and their support. These properties allow us to compute the degree of a Boolean function without having to calculate its algebraic normal form. Furthermore, we introduce some linear algebra properties that allow us to obtain the degree of a Boolean function from the dimension of a linear or affine subspace. Finally we derive some algorithms and compute the average time to obtain the degree of some Boolean functions from its support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing Boolean functions as polynomials modulo composite numbers. Comput. Complex. 4(4), 367–382 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borissov, Y., Braeken, A., Nikova, S., Preneel, B.: On the covering radii of binary Reed–Muller codes in the set of resilient Boolean functions. IEEE Trans. Inf. Theory 51(3), 1182–1189 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braeken, A., Nikov, V., Nikova, S., Preneel, B.: On Boolean functions with generalized cryptographic properties. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology—INDOCRYPT 2004, Volume 3348 of Lecture Notes in Computer Science, pp. 120–135. Springer, Berlin (2004)

  4. Carlet, C., Tarannikov, Y.: Covering sequences of Boolean functions and their cryptographic significance. Des. Codes Cryptogr. 25, 263–279 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnes, C., Rötteler, M., Beth, T.: Homogeneous bent functions, invariants, and designs. Des. Codes Cryptogr. 26, 139–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Climent, J.-J., García, F. J., Requena, V.: Computing the degree of a Boolean function from its support. In: Chao, C.-C., Kohno, R. (eds), Proceedings of the 2010 International Symposium on Information Theory and its Applications (ISITA2010), pp. 123–128. IEEE Press (2010)

  7. Climent, J.-J., García, F.J., Requena, V.: Some algebraic properties related to the degree of a Boolean function. In: Aguiar, J.V. (ed), Proceedings of the 10th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2010), pp. 373–384 (2010)

  8. Climent, J.-J., García, F.J., Requena, V.: The degree of a Boolean function and some algebraic properties of its support. WIT Trans. Inf. Commun. Technol. 45, 25–36 (2013)

    Article  Google Scholar 

  9. Dawson, E., Wu, C.-K.: Construction of correlation immune Boolean functions. In: Han, Y., Okamoto, T., Qing, S. (eds.) Information and Communications Security—ICIS ’97, Volume 1334 of Lecture Notes in Computer Science, pp. 170–180. Springer, Berlin (1997)

  10. Gonda, J.: Transformation of the canonical disjunctive normal form of a Boolean function to its Zhegalkin-polynomial and back. Ann. Discrete Math. 19, 147–164 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Habib, M.K.: Boolean matrix representation for the conversion of minterms to Reed–Muller coefficients and the minimization of Exclusiove-OR switching functions. Int. J. Electron. 68(4), 493–506 (1990)

    Article  MATH  Google Scholar 

  12. Kurosawa, K., Iwata, T., Yoshiwara, T.: New covering radius of Reed–Muller codes for \(t\)-resilient functions. IEEE Trans. Inf. Theory 50(3), 468–475 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurosawa, K., Matsumoto, R.: Almost security of cryptographic Boolean functions. IEEE Trans. Inf. Theory 50(11), 2752–2761 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kurosawa, K., Satoh, T.: Design of \(SAC/PC(l)\) of order \(k\) Boolean functions and three other cryptographic criteria. In: Fumy, W. (ed.) Advances in Cryptology—EUROCRYPT ’97, Volume 1233 of Lecture Notes in Computer Science, pp. 434–449. Springer, Berlin (1997)

  15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 6th edn. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  16. Matsumoto, R., Kurosawa, K., Itoh, T., Konno, T., Uyematsu, T.: Primal-dual distance bounds of linear codes with application to cryptography. IEEE Trans. Inf. Theory 52(9), 4251–4256 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology—EUROCRYPT 2004, Volume 3027 of Lecture Notes in Computer Science, pp. 474–491. Springer, Berlin (2004)

  18. Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.J., Vandewalle, J. (eds.) Advances in Cryptology—EUROCRYPT’89, Volume 434 of Lecture Notes in Computer Science, pp. 549–562. Springer, Berlin (1990)

  19. Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computat. Complex. 4(4), 301–313 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Olejár, D., Stanek, M.: On cryptographic properties of random Boolean functions. J. Univ. Comput. Sci. 4(8), 705–717 (1998)

    MathSciNet  MATH  Google Scholar 

  21. Ozols, R., Freivalds, R., Ivanovs, J., Kalniņa, E., Lāce, L., Miyakawa, M., Hisayuki, T., Taimiņa, D.: Boolean functions with a low polynomial degree and quantum query algorithms. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005: Theory and Practice of Computer Science, Volume 3381 of Lecture Notes in Computer Science, vol. 3381, pp. 408–412. Springer, Berlin (2005)

  22. Pasalic, E., Johansson, T.: Further results on the relation between nonlinearity and resiliency for Boolean functions. In: Walker, M. (ed.) Crytography and Coding, Volume 1746 of Lecture Notes in Computer Science, pp. 35–44. Springer, Berlin (1999)

  23. Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation characteristics of Boolean functions. In: Damgard, I.B. (ed.) Advances in Cryptology—EUROCRYPT’90, Volume 473 of Lecture Notes in Computer Science, pp. 161–173. Springer, Berlin (1991)

  24. Qu, C., Seberry, J., Pieprzyk, J.: On the symmetric property of homogeneous Boolean functions. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds), Proceedings of the Australasian Conference on Information Security and Privacy—ACISP’99, Volume 1587 of Lecture Notes in Computer Science, pp. 26–35. Springer, Berlin, (1999)

  25. Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, New York (1986)

    Book  MATH  Google Scholar 

  26. Rueppel, R.A., Staffelbach, O.J.: Products of linear recurring sequences with maximum complexity. IEEE Trans. Inf. Theory 33(1), 124–131 (1987)

    Article  MATH  Google Scholar 

  27. Strazdins, I.: Universal affine classification of Booelan functions. Acta Applicandae Mathematicae 46, 147–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vanstone, S.A., van Oorschot, P.C.: An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers, Boston (1989)

    Book  MATH  Google Scholar 

  29. Zhang, W., Xiao, G.: Constructions of almost optimal resilient Boolean functions on large even number of variables. IEEE Trans. Inf. Theory 55(12), 5822–5831 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhang, X.-M., Zheng, Y., Imai, H.: Duality of boolean functions and its cryptographic significance. In: Han, Y., Okamoto, T., Quing, S. (eds.) Information and Communications Security, Volume 1334 of Lecture Notes in Computer Science, pp. 159–169. Springer, Berlin (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan-Josep Climent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Climent, JJ., García, F.J. & Requena, V. Boolean Functions: Degree and Support. Math.Comput.Sci. 12, 349–369 (2018). https://doi.org/10.1007/s11786-018-0350-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0350-8

Keywords

Mathematics Subject Classification

Navigation