Abstract
In this paper we establish some properties about Boolean functions that allow us to relate their degree and their support. These properties allow us to compute the degree of a Boolean function without having to calculate its algebraic normal form. Furthermore, we introduce some linear algebra properties that allow us to obtain the degree of a Boolean function from the dimension of a linear or affine subspace. Finally we derive some algorithms and compute the average time to obtain the degree of some Boolean functions from its support.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Barrington, D.A.M., Beigel, R., Rudich, S.: Representing Boolean functions as polynomials modulo composite numbers. Comput. Complex. 4(4), 367–382 (1998)
Borissov, Y., Braeken, A., Nikova, S., Preneel, B.: On the covering radii of binary Reed–Muller codes in the set of resilient Boolean functions. IEEE Trans. Inf. Theory 51(3), 1182–1189 (2005)
Braeken, A., Nikov, V., Nikova, S., Preneel, B.: On Boolean functions with generalized cryptographic properties. In: Canteaut, A., Viswanathan, K. (eds.) Progress in Cryptology—INDOCRYPT 2004, Volume 3348 of Lecture Notes in Computer Science, pp. 120–135. Springer, Berlin (2004)
Carlet, C., Tarannikov, Y.: Covering sequences of Boolean functions and their cryptographic significance. Des. Codes Cryptogr. 25, 263–279 (2002)
Charnes, C., Rötteler, M., Beth, T.: Homogeneous bent functions, invariants, and designs. Des. Codes Cryptogr. 26, 139–154 (2002)
Climent, J.-J., García, F. J., Requena, V.: Computing the degree of a Boolean function from its support. In: Chao, C.-C., Kohno, R. (eds), Proceedings of the 2010 International Symposium on Information Theory and its Applications (ISITA2010), pp. 123–128. IEEE Press (2010)
Climent, J.-J., García, F.J., Requena, V.: Some algebraic properties related to the degree of a Boolean function. In: Aguiar, J.V. (ed), Proceedings of the 10th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2010), pp. 373–384 (2010)
Climent, J.-J., García, F.J., Requena, V.: The degree of a Boolean function and some algebraic properties of its support. WIT Trans. Inf. Commun. Technol. 45, 25–36 (2013)
Dawson, E., Wu, C.-K.: Construction of correlation immune Boolean functions. In: Han, Y., Okamoto, T., Qing, S. (eds.) Information and Communications Security—ICIS ’97, Volume 1334 of Lecture Notes in Computer Science, pp. 170–180. Springer, Berlin (1997)
Gonda, J.: Transformation of the canonical disjunctive normal form of a Boolean function to its Zhegalkin-polynomial and back. Ann. Discrete Math. 19, 147–164 (2001)
Habib, M.K.: Boolean matrix representation for the conversion of minterms to Reed–Muller coefficients and the minimization of Exclusiove-OR switching functions. Int. J. Electron. 68(4), 493–506 (1990)
Kurosawa, K., Iwata, T., Yoshiwara, T.: New covering radius of Reed–Muller codes for \(t\)-resilient functions. IEEE Trans. Inf. Theory 50(3), 468–475 (2004)
Kurosawa, K., Matsumoto, R.: Almost security of cryptographic Boolean functions. IEEE Trans. Inf. Theory 50(11), 2752–2761 (2004)
Kurosawa, K., Satoh, T.: Design of \(SAC/PC(l)\) of order \(k\) Boolean functions and three other cryptographic criteria. In: Fumy, W. (ed.) Advances in Cryptology—EUROCRYPT ’97, Volume 1233 of Lecture Notes in Computer Science, pp. 434–449. Springer, Berlin (1997)
MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 6th edn. North-Holland, Amsterdam (1988)
Matsumoto, R., Kurosawa, K., Itoh, T., Konno, T., Uyematsu, T.: Primal-dual distance bounds of linear codes with application to cryptography. IEEE Trans. Inf. Theory 52(9), 4251–4256 (2006)
Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean functions. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology—EUROCRYPT 2004, Volume 3027 of Lecture Notes in Computer Science, pp. 474–491. Springer, Berlin (2004)
Meier, W., Staffelbach, O.: Nonlinearity criteria for cryptographic functions. In: Quisquater, J.J., Vandewalle, J. (eds.) Advances in Cryptology—EUROCRYPT’89, Volume 434 of Lecture Notes in Computer Science, pp. 549–562. Springer, Berlin (1990)
Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Computat. Complex. 4(4), 301–313 (1998)
Olejár, D., Stanek, M.: On cryptographic properties of random Boolean functions. J. Univ. Comput. Sci. 4(8), 705–717 (1998)
Ozols, R., Freivalds, R., Ivanovs, J., Kalniņa, E., Lāce, L., Miyakawa, M., Hisayuki, T., Taimiņa, D.: Boolean functions with a low polynomial degree and quantum query algorithms. In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005: Theory and Practice of Computer Science, Volume 3381 of Lecture Notes in Computer Science, vol. 3381, pp. 408–412. Springer, Berlin (2005)
Pasalic, E., Johansson, T.: Further results on the relation between nonlinearity and resiliency for Boolean functions. In: Walker, M. (ed.) Crytography and Coding, Volume 1746 of Lecture Notes in Computer Science, pp. 35–44. Springer, Berlin (1999)
Preneel, B., Van Leekwijck, W., Van Linden, L., Govaerts, R., Vandewalle, J.: Propagation characteristics of Boolean functions. In: Damgard, I.B. (ed.) Advances in Cryptology—EUROCRYPT’90, Volume 473 of Lecture Notes in Computer Science, pp. 161–173. Springer, Berlin (1991)
Qu, C., Seberry, J., Pieprzyk, J.: On the symmetric property of homogeneous Boolean functions. In: Pieprzyk, J., Safavi-Naini, R., Seberry, J. (eds), Proceedings of the Australasian Conference on Information Security and Privacy—ACISP’99, Volume 1587 of Lecture Notes in Computer Science, pp. 26–35. Springer, Berlin, (1999)
Rueppel, R.A.: Analysis and Design of Stream Ciphers. Springer, New York (1986)
Rueppel, R.A., Staffelbach, O.J.: Products of linear recurring sequences with maximum complexity. IEEE Trans. Inf. Theory 33(1), 124–131 (1987)
Strazdins, I.: Universal affine classification of Booelan functions. Acta Applicandae Mathematicae 46, 147–167 (1997)
Vanstone, S.A., van Oorschot, P.C.: An Introduction to Error Correcting Codes with Applications. Kluwer Academic Publishers, Boston (1989)
Zhang, W., Xiao, G.: Constructions of almost optimal resilient Boolean functions on large even number of variables. IEEE Trans. Inf. Theory 55(12), 5822–5831 (2009)
Zhang, X.-M., Zheng, Y., Imai, H.: Duality of boolean functions and its cryptographic significance. In: Han, Y., Okamoto, T., Quing, S. (eds.) Information and Communications Security, Volume 1334 of Lecture Notes in Computer Science, pp. 159–169. Springer, Berlin (1997)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Climent, JJ., García, F.J. & Requena, V. Boolean Functions: Degree and Support. Math.Comput.Sci. 12, 349–369 (2018). https://doi.org/10.1007/s11786-018-0350-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11786-018-0350-8