Skip to main content
Log in

Solving Parametric Ideal Membership Problems and Computing Integral Numbers in a Ring of Convergent Power Series Via Comprehensive Gröbner Systems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

New algorithms are presented for solving ideal membership problems with parameters and for computing integral numbers in a ring of convergent power series. It is shown that the ideal membership problems for zero-dimensional ideals in the ring of convergent power series, can be solved in the polynomial ring. The key idea of the algorithms is computing comprehensive Gröbner systems of ideal quotients in a polynomial ring. Furthermore, new methods for computing integral numbers, in the local ring, are introduced as an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 3rd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  2. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4-1-0—a computer algebra system for polynomial computations (2016). http://www.singular.uni-kl.de. Accessed 31 May 2018

  3. Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gaffney, T.: The theory of integral closure of ideals and modules: applications and new developments. With an appendix by Steven Kleiman and Anders Thorup, New Developments in Singularity Theory (Cambridge, 2000), NATO Science Series II Mathematics, Physics and Chemistry, vol. 21. Kluwer Academic Publishers (2001)

  5. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation 2010, pp. 29–36. ACM (2010)

  6. Kato, M.: The \(b\)-function of \(\mu \)-constant deformation of \(x^9 +y^4\). Bull. Coll. Sci. Univ. Ryukyus 33, 5–8 (1982)

    Google Scholar 

  7. Kulikov, V.: Mixed Hodge Structures and Singularities. Cambridge Tracts in Mathematics, vol. 132. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  8. Malgrange, B.: Letter to editors. Invent. Math. 20, 171–172 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mora, T.: An algorithm to compute the equations of tangent cones. In: Proceedings of the EUROCAM 1982. Lecture Notes in Computer Science, vol. 144, pp. 158–165. Springer, Heidelberg (1982)

  10. Mora, T., Pfister, G., Traverso, T.: An introduction to the tangent cone algorithm. Adv. Comput. Res. 6, 199–270 (1992). (issued in robotics and nonlinear geometry)

    Google Scholar 

  11. Nabeshima, K.: Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems, Lecture Notes in Computer Science, vol. 7442, pp. 248–259. Springer, New York (2012)

    MATH  Google Scholar 

  12. Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html. Accessed 7 Nov 2017

  13. Saia, M.J.: The integral closure of ideals and the Newton filtration. J. Algebr. Geom. 5, 1–11 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Saia, M.J., Tomazella, J.N.: Deformations with constant Milnor number and multiplicity of non-degenerate complex hypersurfaces. Cad. Mat. 03, 33–44 (2002)

    Google Scholar 

  15. Scherk, J.: On the Gauss–Manin connection of an isolated hypersurface singularity. Math. Ann. 238(1), 23–32 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Scherk, J.: On the monodromy theorem for isolated hypersurface singularities. Invent. Math. 58(3), 289–301 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Schulze, M.: Algorithms for the Gauss–Manin connections. J. Symb. Comput. 32, 549–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shibuta, F., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideal of Cohen–Macaulay local rings. arXiv:1710.01435v1 [math.AC], 4 Oct (2017)

  19. Skoda, H., Briançon, J.: Sur la coôture intégrale d’un idéal de germes de fonctions holomorphes en un point de \(\mathbb{C}^{n}\). C. R. Acad. Sci. Paris Sér. A 278, 949–951 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation 2006, pp. 326–331. ACM (2006)

  21. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  22. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. Astérisques 7–8, 285–362 (1973)

    MATH  Google Scholar 

  23. Teissier, B.: Introduction to equisingularity problems. In: Proceedings of Symposia in Pure Mathematics, vol. 29, pp. 593–632 (1975)

  24. Teissier, B.: Variétés polaires I. Invent. Math. 40, 267–292 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yano, T.: On the theory of \(b\)-functions. Pub. Res. Inst. Math. Sci. 14, 111–202 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima.

Additional information

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (Nos. 15KT0102, 15K04891) and JSPS Grant-in-Aid for Young Scientist (B) (No. 15K17513).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabeshima, K., Tajima, S. Solving Parametric Ideal Membership Problems and Computing Integral Numbers in a Ring of Convergent Power Series Via Comprehensive Gröbner Systems. Math.Comput.Sci. 13, 185–194 (2019). https://doi.org/10.1007/s11786-018-0354-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0354-4

Keywords

Mathematics Subject Classification

Navigation