Skip to main content
Log in

A Note on Siamese Twin Designs Intersecting in a BIBD and a PBD

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Suppose there exists a Hadamard 2-\((m,\frac{m-1}{2},\frac{m-3}{4})\) design with skew incidence matrix, and a conference graph with v vertices, where \(v = 2m-1\). Under this assumption we prove that there exists a Siamese twin Menon design with parameters \((4m^{2},2m^{2}-m,m^{2}-m)\) intersecting in a balanced incomplete block design \(\mathrm {BIBD}(2m^{2} - m, m^{2} - m, m^{2} - m - 1)\) and a pairwise balanced design \(\mathrm {PBD}(2m^{2} - m, \{m^{2}, m^{2} - m\}, m^{2} - m - 1)\). These Menon designs lead to regular amicable Hadamard matrices of orders not previously constructed. Further we construct complex orthogonal designs of order \(4m^2\) and Butson Hadamard matrices \(\mathrm {BH}(4m^{2},2k)\) for all k. Some results regarding automorphisms of the constructed Menon designs are proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balonin, N.A., Seberry, J.: A review and new symmetric conference matrices. Informatsionno-upravliaiushchie sistemy 4(71), 2–7 (2014)

    Google Scholar 

  2. Beth, T., Jungnickel, D., Lenz, H.: Design Theory, Volume 1, 2nd Edition, Encyclopedia Mathematical Applications, 69, Cambridge University Press, Cambridge (1999)

  3. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbol. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  4. Crnković, D.: A series of Siamese twin designs intersecting in a BIBD and a PBD. Australas. J. Comb. 41, 139–145 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Crnković, D.: Regular Hadamard matrices constructed from Hadamard 2-designs and conference graphs. Discrete Math. 341, 520–524 (2018)

    Article  MathSciNet  Google Scholar 

  6. de Launey, W., Flannery, D.L.: Algebraic design theory, Mathematical Surveys and Monographs, 175, American Mathematical Society, Providence (2011)

  7. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de (2007). Accessed 21 Sept 2017

  8. Kotsireas, I., Koukouvinos, C.: New skew-Hadamard matrices via computational algebra. Australas. J. Combin. 41, 235–248 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Koukouvinos, C.: Summary results for the existences of Hadamard matrices. http://www.math.ntua.gr/~ckoukouv/ (2016). Accessed 21 Sept 2017

  10. Koukouvinos, C., Stylianou, S.: On skew-Hadamard matrices. Discrete Math. 308, 2723–2731 (2008)

    Article  MathSciNet  Google Scholar 

  11. Seberry, J.: On skew Hadamard matrices. Ars. Combin. 6, 255–275 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Seberry, J., Wysocki, B.J., Wysocki, T.A.: On some applications of Hadamard matrices. Metrika 62(2–3), 221–239 (2005)

    Article  MathSciNet  Google Scholar 

  13. Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In: Dinitz, J., Stinson, D. (eds.) Contemporary design theory, pp. 431–560. Wiley-Intersci. Ser. Discrete Math. Optim., Wiley-Intersci. Publ., Wiley, New York (1992)

  14. Seberry, J., Yamada, M.: Amicable Hadamard matrices and amicable orthogonal designs. Utilitas Math. 40, 179–192 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been fully supported by Croatian Science Foundation under the project 1637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronan Egan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crnković, D., Egan, R. A Note on Siamese Twin Designs Intersecting in a BIBD and a PBD. Math.Comput.Sci. 12, 389–395 (2018). https://doi.org/10.1007/s11786-018-0380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0380-2

Keywords

Mathematics Subject Classification