Skip to main content

Advertisement

Log in

Common Points Between Perturbed Chebyshev Polynomials of Second Kind

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

We consider some perturbation of the Chebyshev polynomials of second kind obtained by modifying one of its recurrence coefficients at an arbitrary order. The goal of this work is to point out that perturbed Chebyshev polynomials of fixed degree and different values of parameters of perturbation have some common points that are zeros of two Chebyshev polynomials of second kind of lower degrees. These common points can be simple or double. We identify the cases in which they are common zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chihara, T.S.: On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)

    Article  MathSciNet  Google Scholar 

  2. Chihara, T.S.: An Introduction to Orthogonal Polynomials, Mathematics and its Applications, vol. 13. Gordon and Breach Science Publishers, New York (1978)

    MATH  Google Scholar 

  3. da Rocha, Z.: Shohat–Favard and Chebyshev’s methods in d-orthogonality. Numer. Algorithms 20, 139–164 (1999)

    Article  MathSciNet  Google Scholar 

  4. da Rocha, Z.: A general method for deriving some semi-classical properties of perturbed second degree forms: the case of the Chebyshev form of second kind. J. Comput. Appl. Math. 296, 677–689 (2016)

    Article  MathSciNet  Google Scholar 

  5. da Rocha, Z.: On the second order differential equation satisfied by perturbed Chebyshev polynomials. J. Math. Anal. 7(1), 53–69 (2016)

    MathSciNet  MATH  Google Scholar 

  6. da Rocha, Z.: On connection coefficients of some perturbed of arbitrary order of the Chebyshev polynomials of second kind. J. Differ. Equ. Appl. 25(1), 97–118 (2019)

    Article  MathSciNet  Google Scholar 

  7. Dini, J., Maroni, P., Ronveaux, A.: Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Portugal. Math. 46(3), 269–282 (1989)

    MathSciNet  MATH  Google Scholar 

  8. Erb, W.: Accelerated Landweber methods based on co-dilated orthogonal polynomials. Numer. Algorithm 68, 229–260 (2015)

    Article  MathSciNet  Google Scholar 

  9. Favard, J.: Sur les polynômes de Tchebicheff. CR Acad. Sci. Paris 200, 2052–2053 (1935). (in French)

    MATH  Google Scholar 

  10. Marcellán, F., Dehesa, J.S., Ronveaux, A.: On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30, 203–212 (1990)

    Article  MathSciNet  Google Scholar 

  11. Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et al. (eds.) Orthogonal Polynomials and their Applications (Erice, 1990), IMACS Ann. Comput. Appl. Math., 9 95–130 (1991)

  12. Maroni, P.: An introduction to second degree forms. Adv. Comput. Math. 3, 59–88 (1995)

    Article  MathSciNet  Google Scholar 

  13. Maroni, P.: Tchebychev forms and their perturbed as second degree forms. Ann. Numer. Math. 2(1–4), 123–143 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Maroni, P., Mejri, M.: Some perturbed sequences of order one of the Chebyshev polynomials of second kind. Integr. Transforms Spec. Funct. 25(1), 44–60 (2014)

    Article  MathSciNet  Google Scholar 

  15. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  16. Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 29(2), 225–231 (1990)

    Article  MathSciNet  Google Scholar 

  17. Slim, H.A.: On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136, 1–19 (1988)

    Article  MathSciNet  Google Scholar 

  18. Shohat, J.A.: Sur les polynômes orthogonaux généralisés. CR Acad. Sci. Paris 207, 556 (1938). (in French)

    MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by CMUP (UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MEC) and European structural funds through the programs FEDER, under the partnership agreement PT2020. The author would like to thank the referee for some comments and bibliographic references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zélia da Rocha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Rocha, Z. Common Points Between Perturbed Chebyshev Polynomials of Second Kind. Math.Comput.Sci. 15, 5–13 (2021). https://doi.org/10.1007/s11786-020-00469-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-020-00469-x

Keywords

Mathematics Subject Classification