Skip to main content
Log in

Symmetry-Based Algorithms for Invertible Mappings of Polynomially Nonlinear PDE to Linear PDE

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

This paper is a sequel to our previous work where we introduced the MapDE algorithm to determine the existence of analytic invertible mappings of an input (source) differential polynomial system (DPS) to a specific target DPS, and sometimes by heuristic integration an explicit form of the mapping. A particular feature was to exploit the Lie symmetry invariance algebra of the source without integrating its equations, to facilitate MapDE, making algorithmic an approach initiated by Bluman and Kumei. In applications, however, the explicit form of a target DPS is not available, and a more important question is, can the source be mapped to a more tractable class? We extend MapDE to determine if a source nonlinear DPS can be mapped to a linear differential system. MapDE applies differential-elimination completion algorithms to the various over-determined DPS by applying a finite number of differentiations and eliminations to complete them to a form for which an existence-uniqueness theorem is available, enabling the existence of the linearization to be determined among other applications. The methods combine aspects of the Bluman–Kumei mapping approach with techniques introduced by Lyakhov, Gerdt and Michels for the determination of exact linearizations of ODE. The Bluman–Kumei approach for PDE focuses on the fact that such linearizable systems must admit a usually infinite Lie sub-pseudogroup corresponding to the linear superposition of solutions in the target. In contrast, Lyakhov et al. focus on ODE and properties of the so-called derived sub-algebra of the (finite) dimensional Lie algebra of symmetries of the ODE. Examples are given to illustrate the approach, and a heuristic integration method sometimes gives explicit forms of the maps. We also illustrate the powerful maximal symmetry groups facility as a natural tool to be used in conjunction with MapDE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

\(M_{\mathrm{BK}}\) :

Bluman–Kumei mapping equations

\({{\mathscr {I}}}\) :

An infinite set of data

\({{\mathscr {P}}}\) :

A set of parametric derivatives

DetSys:

Determining system

DetJac:

Determinant of the Jacobian

HF:

Differential Hilbert Function

dord:

Differential Order

free:

The number of free variables in I set

LGMLinTest:

Algorithm 1

ExtractTarget:

Algorithm 4.3

DPS:

Differential Polynomial System

ID:

Initial data

LAVF :

LieAlgebrasOfVectorFields Maple package

MapDE :

Algorithm 3

ODE:

Ordinary Differential Equation

PDE:

Partial Differential Equation

PreEquivTest :

Algorithm 2

DEC:

Differential-elimination completion algorithms

d:

Differential dimension

References

  1. Anco, S., Bluman, G., Wolf, T.: Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws. Acta Appl. Math. 101, 21–38 (2008)

    Article  MathSciNet  Google Scholar 

  2. Anderson, I.M., Torre, C.G.: New symbolic tools for differential geometry, gravitation, and field theory. J. Math. Phys. 53, 013511 (2012)

    Article  MathSciNet  Google Scholar 

  3. Arnaldsson, O.: Involutive moving frames. Ph.D. Thesis, University of Minnesota (2017)

  4. Bluman, G., Kumei, S.: Symmetries and Differential Equations. Springer, Berlin (1989)

    Book  Google Scholar 

  5. Bluman, G., Kumei, S.: Symmetry based algorithms to relate partial differential equations: I. Local symmetries. Eur. J. Appl. Math. 1, 189–216 (1990)

    Article  MathSciNet  Google Scholar 

  6. Bluman, G., Kumei, S.: Symmetry based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries. Eur. J. Appl. Math. 1, 217–223 (1990)

    Article  MathSciNet  Google Scholar 

  7. Bluman, G., Yang, Z.: Some recent developments in finding systematically conservation laws and nonlocal symmetries for partial differential equations. In: Ganghoffer, J.F., Mladenov, I. (eds.) Similarity and Symmetry Methods Applications in Elasticity and Mechanics of Materials, vol. 73, pp. 1–59. Springer, Cham (2014)

    Google Scholar 

  8. Bluman, G.W., Cheviakov, A.F., Anco, S.C.: Applications of Symmetry Methods to Partial Differential Equations. Springer, Cham (2010)

    Book  Google Scholar 

  9. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of a finitely generated differential ideal. Proc. ISSAC 95, pp. 158–166 (1995)

  10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for radicals of finitely generated differential ideals. J. Appl. Algebra Eng. Commun. Comput. 20 (2009)

  11. Boulier, F., Lemaire, F., Maza, M.M.: Computing differential characteristic sets by change of ordering. J. Symb. Comput. 45(1), 124–149 (2010)

    Article  MathSciNet  Google Scholar 

  12. Carminati, J., Vu, K.: Symbolic computation and differential equations: Lie symmetries. J. Symb. Comput. 29, 95–116 (2000)

    Article  MathSciNet  Google Scholar 

  13. Cheviakov, A.F.: GeM software package for computation of symmetries and conservation laws of differential equations. Comput. Phys. Commun. 176(1), 48–61 (2007)

    Article  MathSciNet  Google Scholar 

  14. Fels, M., Olver, P.: Moving coframes II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127–208 (1999)

    Article  MathSciNet  Google Scholar 

  15. Golubitsky, O., Kondratieva, M., Ovchinnikov, A., Szanto, A.: A bound for orders in differential Nullstellensatz. J. Algebra 322(11), 3852–3877 (2009)

    Article  MathSciNet  Google Scholar 

  16. Huang, S.L.: Properties of lie algebras of vector fields from lie determining system. Ph.D. thesis, University of Canberra (2015)

  17. Hubert, E.: Differential invariants of a Lie group action: syzygies on a generating set. J. Symb. Comput. 44(4), 382–416 (2009)

    Article  MathSciNet  Google Scholar 

  18. Kruglikov, B., The, D.: Jet-determination of symmetries of parabolic geometries. Math. Ann. 371(3), 1575–1613 (2018)

    Article  MathSciNet  Google Scholar 

  19. Kumei, S., Bluman, G.: When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. Math. 42, 1157–1173 (1982)

    Article  MathSciNet  Google Scholar 

  20. Lange, M.: The differential counting polynomial. Found. Comput. Math. 18(2), 291–308 (2018)

    Article  MathSciNet  Google Scholar 

  21. Lemaire, F.: Contribution à l’algorithmique en algèbre différentielle. Université des Sciences et Technologie de Lille-Lille, vol. I (2002)

  22. Lisle, I., Huang, S.-L.: Algorithms calculus for Lie determining systems. J. Symb. Comput. 79, 482–498 (2017)

    Article  Google Scholar 

  23. Lisle, I.G., Reid, G.J.: Geometry and structure of Lie pseudogroups from infinitesimal defining systems. J. Symb. Comput. 26(3), 355–379 (1998)

    Article  MathSciNet  Google Scholar 

  24. Lisle, I.G., Reid, G.J.: Symmetry classification using noncommutative invariant differential operators found. Comput. Math. 6(3), 1615–3375 (2006)

    MATH  Google Scholar 

  25. Lyakhov, D., Gerdt, V., Michels, D.: Algorithmic verification of linearizability for ordinary differential equations. In: Proceedings of ISSAC ’17, ACM, pp. 285–292 (2017)

  26. Mahomed, F.M., Leach, P.G.L.: Symmetry Lie algebra of nth order ordinary differential equations. J. Math. Anal. Appl. 1151, 80–107 (1990)

    Article  Google Scholar 

  27. Mansfield, E.: A Practical Guide to the Invariant Calculus. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  28. Mikhalev, A.V., Levin, A.B., Pankratiev, E.V., Kondratieva, M.V.: Differential and Difference Dimension Polynomials. Mathematics and Its Applications. Springer, Dordrecht (2013)

    MATH  Google Scholar 

  29. Mohammadi, Z., Reid, G., Huang, S.-L.T: Introduction of the MapDE algorithm for determination of mappings relating differential equations (2019). arXiv:1903.02180v1 [math.AP]. To appear in Proceedings of ISSAC ’19, ACM

  30. Neut, S., Petitot, M., Dridi, R.: Élie Cartan’s geometrical vision or how to avoid expression swell. J. Symb. Comput. 44(3), 261–270 (2009)

    Article  Google Scholar 

  31. Olver, P.: Application of Lie groups to differential equations, 2nd edn. Springer, Berlin (1993)

    Book  Google Scholar 

  32. Olver, P.: Equivalence, Invariance, and Symmetry. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  33. Reid, G.J.: Finding abstract Lie symmetry algebras of differential equations without integrating determining equations. Eur. J. Appl. Math. 2, 319–340 (1991)

    Article  MathSciNet  Google Scholar 

  34. Reid, G.J., Lisle, I.G., Boulton, A., Wittkopf, A.D.: Algorithmic determination of commutation relations for Lie symmetry algebras of PDEs. Proc. ISSAC 92, 63–68 (1992)

    MATH  Google Scholar 

  35. Reid, G.J., Wittkopf, A.D.: Determination of maximal symmetry groups of classes of differential equations. Proc. ISSAC 2000, pp. 272–280 (2000)

  36. Riquier, C.: Les systèmes déquations aux dérivées partielles. Gauthier-Villars, Paris (1910)

    Google Scholar 

  37. Robertz, D.: Formal Algorithmic Elimination for PDEs. Lecture Notes in Mathematics, vol. 2121. Springer, Berlin (2014)

    MATH  Google Scholar 

  38. Rocha, T., Figueiredo, A.: SADE: a Maple package for the symmetry analysis of differential equations. Comput. Phys. Commun. 182(2), 467–476 (2011)

    Article  Google Scholar 

  39. Rust, C.J., Reid, G.J.: Rankings of partial derivatives. Proc. ISSAC 97, pp. 9–16 (1997)

  40. Rust, C.J., Reid, G.J., Wittkopf, A.D.: Existence and uniqueness theorems for formal power series solutions of analytic differential systems. Proc. ISSAC 99, pp. 105–112 (1999)

  41. Seiler, W.: Involution: The Formal Theory of Differential Equations and Its Applications in Computer Algebra, Algorithms and Computation in Mathematics, vol. 24. Springer, Berlin (2010)

    Book  Google Scholar 

  42. Thomas, J.M.: Differential Systems, vol. XXI. AMS Colloquium Publications, New York (1937)

    Google Scholar 

  43. Valiquette, F.: Solving local equivalence problems with the equivariant moving frame method. SIGMA: Symmetry Integrability and Geometry Methods and Applications, vol. 9 (2013)

  44. Wolf, T.: Investigating differential equations with crack, liepde, applsymm and conlaw. Handb. Comput. Algebra Found. Appl. Syst. 37, 465–468 (2002)

    Google Scholar 

  45. Wolf, T.: Partial and complete linearization of PDEs based on conservation laws. In: Zheng, Z., Wang, D. (eds.) Differential Equations with Symbolic Computations, Trends in Mathematics, pp. 291–306. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

Download references

Acknowledgements

One of us (GR) acknowledges his debt to Ian Lisle who was the initial inspiration behind this work, especially his vision for Lie pseudogroups and an algorithmic calculus for symmetries of differential systems. GR and ZM acknowledge support from GR’s NSERC discovery grant. Our program and a demo file included some part of our computations are publicly available on GitHub at: https://github.com/GregGitHub57/MapDETools

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Reid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, Z., Reid, G.J. & Huang, SL.T. Symmetry-Based Algorithms for Invertible Mappings of Polynomially Nonlinear PDE to Linear PDE. Math.Comput.Sci. 15, 293–316 (2021). https://doi.org/10.1007/s11786-020-00483-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-020-00483-z

Keywords

Mathematics Subject Classification

Navigation