Skip to main content
Log in

Calculating the Minimum Distance of a Toric Code via Algebraic Algorithms

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Toric codes are examples of evaluation codes. They are produced by evaluating homogeous polynomials of a fixed degree at the \({\mathbb {F}}_q\)-rational points of a subset Y of a toric variety X. These codes reveal how algebraic geometry and coding theory are interrelated. The minimum distance of a code is the minimum number of nonzero entries in the codewords of the code. Let I(Y) be the ideal generated by all homogeneous polynomials vanishing at all the points of Y, which is also known as the vanishing ideal of Y. We give three algebraic algorithms computing the minimum distance by using commutative algebraic tools such as the multigraded Hilbert polynomials of ideals obtained from I(Y) and zero divisors f of I(Y), and primary decomposition of I(Y), for finding a homogeneous polynomial f among all homogeneous polynomials of the same degree which has the maximum number of roots on Y.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1

Similar content being viewed by others

References

  1. Baran, E., Sahin, M.: On parameterized Toric codes. Appl. Algebra Eng. Commun. Comput. (2023). https://doi.org/10.1007/s00200-021-00513-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Birmpilis, S., Labahn, G., Storjohann, A.: A fast algorithm for computing the Smith normal form with multipliers for a nonsingular integer matrix. J. Symbolic Comput. 116, 146–182 (2023). https://doi.org/10.1016/j.jsc.2022.09.002

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosch, S.: Algebraic Geometry and Commutative Algebra, Universitext, p. 504. Springer, London (2013). https://doi.org/10.1007/978-1-4471-4829-6

    Book  MATH  Google Scholar 

  4. Brown, G., Kasprzyk, A.M.: Seven new champion linear codes. LMS J. Comput. Math. 16, 109–117 (2013). https://doi.org/10.1112/S1461157013000041

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, G., Kasprzyk, A.M.: Small polygons and Toric codes. J. Symb. Comput. 51, 55–62 (2013). https://doi.org/10.1016/j.jsc.2012.07.001

    Article  MathSciNet  MATH  Google Scholar 

  6. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties. Graduate Studies in Mathematics, vol. 124, p. 841. American Mathematical Society, Providence, RI (2011). https://doi.org/10.1090/gsm/124

  7. Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/

  8. Hansen, J.P.: Secret sharing schemes with strong multiplication and a large number of players from toric varieties. In: Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 686, pp. 171–185 (2017). https://doi.org/10.1090/conm/686/13783

  9. Hansen, J.P.: Toric surfaces, linear and quantum codes secret sharing and decoding. Facets of Algebraic Geometry: Volume 1: A Collection in Honor of William Fulton’s 80th Birthday 472, 371 (2022)

  10. Lachaud, G.: The parameters of projective Reed-Muller codes. Discrete Math. 81(2), 217–221 (1990). https://doi.org/10.1016/0012-365X(90)90155-B

    Article  MathSciNet  MATH  Google Scholar 

  11. Little, J.B.: Remarks on generalized Toric codes. Finite Fields Appl. 24, 1–14 (2013). https://doi.org/10.1016/j.ffa.2013.05.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Maclagan, D., Smith, G.: Uniform bounds on multigraded regularity. J. Algebr. Geom 14(1), 137–164 (2005). https://doi.org/10.1090/S1056-3911-04-00385-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Martinez-Bernal, J., Pitones, Y., Villarreal, R.H.: Minimum distance functions of graded ideals and reed-muller-type codes. J. Pure Appl. Algebra 221(2), 251–275 (2017). https://doi.org/10.1016/j.jpaa.2016.06.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Nardi, J.: Projective Toric codes. Int. J. Number Theory 18(01), 179–204 (2022). https://doi.org/10.1142/S1793042122500142

    Article  MathSciNet  MATH  Google Scholar 

  15. Nardi, J.: Algebraic geometric codes on minimal Hirzebruch surfaces. J. Algebra 535, 556–597 (2019). https://doi.org/10.1016/j.jalgebra.2019.06.022

    Article  MathSciNet  MATH  Google Scholar 

  16. Şahin, M.: Computing vanishing ideals for Toric codes. arXiv preprint arXiv:2207.01061 (2022)

  17. Şahin, M., Yayla, O.: Codes on subgroups of weighted projective tori. arXiv preprint arXiv:2210.07550 (2022)

  18. Şahin, M.: Toric codes and lattice ideals. Finite Fields Appl. 52, 243–260 (2018). https://doi.org/10.1016/j.ffa.2018.04.007

    Article  MathSciNet  MATH  Google Scholar 

  19. Şahin, M.: In: Barucci, V., Chapman, S., D’Anna, M., Fröberg, R. (eds.) Lattice Ideals, Semigroups and Toric Codes, pp. 285–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40822-0_16

  20. Smith, G.G.: NormalToricVarieties: A Macaulay2 package. Version 1.9. A Macaulay2 package available at https://github.com/Macaulay2/M2/blob/master/M2/Macaulay2/packages/NormalToricVarieties.m2

  21. Stillman, M., Yackel, C., Chen, J., Sayrafi, M.: PrimaryDecomposition: A Macaulay2 package. Version 2.0. A Macaulay2 package available at https://faculty.math.illinois.edu/Macaulay2/doc/Macaulay2-1.21/share/doc/Macaulay2/PrimaryDecomposition/html/index.html

Download references

Acknowledgements

Fadime Baldemir is supported by TÜBİTAK (TÜBİTAK-2211-A National PhD Scholarship Program). Mesut Şahin is supported by TÜBİTAK Project No:119F177. This article is part of Fadime Baldemir’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadime Baldemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldemir, F., Şahin, M. Calculating the Minimum Distance of a Toric Code via Algebraic Algorithms. Math.Comput.Sci. 17, 20 (2023). https://doi.org/10.1007/s11786-023-00566-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-023-00566-7

Keywords

Mathematics Subject Classification

Navigation