Skip to main content
Log in

A Survey on Computational Aspects of Polynomial Amoebas

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

This article is a survey on the topic of polynomial amoebas. We review results of papers written on the topic with an emphasis on its computational aspects. Polynomial amoebas have numerous applications in various domains of mathematics and physics. Computation of the amoeba for a given polynomial and describing its properties is in general a problem of high complexity. We overview existing algorithms for computing and depicting amoebas and geometrical objects associated with them, such as contours and spines. We review the latest software packages for computing polynomial amoebas and compare their functionality and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Open problems: Amoebas and tropical geometry. American Institute of Mathematics (2009), https://aimath.org/~aimath/WWN/openproblems/problemlist11.pdf

  2. Aharony, O., Hanany, A., Kol, B.: Webs of \((p, q)\) 5-branes, five dimensional field theories and grid diagrams. J. High Energy Phys. (1998). https://doi.org/10.1088/1126-6708/1998/01/002

    Article  Google Scholar 

  3. Angelelli, M., Konopelchenko, B.: Zeros and amoebas of partition functions. Rev. Math. Phys. (2018). https://doi.org/10.1142/S0129055X18500150

    Article  MathSciNet  MATH  Google Scholar 

  4. Avendaño, M., Kogan, R., Nisse, M., Rojas, J.: Metric estimates and membership complexity for Archimedean amoebae and tropical hypersurfaces. Rev. Math. Phys. 46, 45–65 (2018). https://doi.org/10.1016/j.jco.2017.11.008

    Article  MathSciNet  MATH  Google Scholar 

  5. Bao, J., He, Y.H., Zahabi, A.: Mahler measure for a quiver symphony. Commun. Math. Phys. 394, 573–624 (2022). https://doi.org/10.1007/s00220-022-04404-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Bao, J., He, Y.H., Hirst, E.: Neurons on amoebae. J. Symb. Comput. 116, 1–38 (2023). https://doi.org/10.1016/j.jsc.2022.08.021

    Article  MathSciNet  MATH  Google Scholar 

  7. Bogdanov, D., Kytmanov, A., Sadykov, T.: Algorithmic computation of polynomial amoebas. Lect. Notes Comput. Sci. incl. subser. Lect. Notes Artif. Intell. Lect. Notes in Bioinform. 9890, 87–100 (2016). https://doi.org/10.1007/978-3-319-45641-6_7

    Article  MathSciNet  MATH  Google Scholar 

  8. Bogdanov, D., Sadykov, T.: Hypergeometric polynomials are optimal. Math. Z. 296(1–2), 373–390 (2020). https://doi.org/10.1007/s00209-019-02444-0

    Article  MathSciNet  MATH  Google Scholar 

  9. Cauchy, A.L.: Œuvres complétes d’Augustin Cauchy. Addison Wesley, Massachusetts, 2 edn. (1882–1938), https://gallica.bnf.fr/ark:/12148/bpt6k90181x.image#

  10. Cherepanskiy, A., Tsikh, A.: Convergence of two-dimensional hypergeometric series for algebraic functions. Integral Transform. Spec. Funct. 31(10), 838–855 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Draisma, J., Rau, J., Yuen, C.: The dimension of an amoeba. Bull. Lond. Math. Soc. 52(1), 16–23 (2020). https://doi.org/10.1112/blms.12301

    Article  MathSciNet  MATH  Google Scholar 

  12. Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781107786134

    Book  MATH  Google Scholar 

  13. Einsiedler, M., Kapranov, M., Lind, D.: Non-archimedean amoebas and tropical varieties. J. Reine Angew. Math. 601, 139–157 (2006). https://doi.org/10.1515/CRELLE.2006.097

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, B., He, Y.H., Kennaway, K., Vafa, C.: Dimer models from mirror symmetry and quivering amoebæ. Adv. Theor. Math. Phys. 12(3), 489–545 (2008). https://doi.org/10.4310/ATMP.2008.v12.n3.a2

    Article  MathSciNet  MATH  Google Scholar 

  15. Forsberg, M.: Amoebas and Laurent Series. Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden (1998)

  16. Forsberg, M., Passare, M., Tsikh, A.: Laurent determinants and arrangements of hyperplane amoebas. Adv. Math. 151(1), 45–70 (2000). https://doi.org/10.1006/aima.1999.1856

    Article  MathSciNet  MATH  Google Scholar 

  17. Forsgård, J.: On dimer models and coamoebas (D). Annales de l’Institut Henri Poincare combinatorics. Phys. Interact. 6(2), 199–219 (2019). https://doi.org/10.4171/aihpd/69

    Article  MathSciNet  MATH  Google Scholar 

  18. Forsgård, J.: Tropical approximation of exponential sums and the multivariate Fujiwara bound. Mosc. Math. J. 20(2), 311–321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forsgård, J.: Discriminant amoebas and lopsidedness. J. Commut. Algebra 13(1), 41–60 (2021). https://doi.org/10.1216/jca.2021.13.41

    Article  MathSciNet  MATH  Google Scholar 

  20. Forsgård, J., Matusevich, L., Mehlhop, N., de Wolff, T.: Lopsided approximation of amoebas. Math. Comput. 88(315), 485–500 (2019). https://doi.org/10.1090/mcom/3323

    Article  MathSciNet  MATH  Google Scholar 

  21. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional Determinants. Birkhäuser Boston Inc, Boston, MA (1994). https://doi.org/10.1007/978-0-8176-4771-1

    Book  MATH  Google Scholar 

  22. Goucha, A., Gouveia, J.: The phaseless rank of a matrix. SIAM J. Appl. Algebra Geom. 5(3), 526–551 (2021). https://doi.org/10.1137/19M1289820

    Article  MathSciNet  MATH  Google Scholar 

  23. Guilloux, A., Marché, J.: Volume function and Mahler measure of exact polynomials. Compos. Math. 157(4), 809–834 (2021). https://doi.org/10.1112/S0010437X21007016

    Article  MathSciNet  MATH  Google Scholar 

  24. Harnack, A.: Über Vieltheiligkeit der Ebenen Algebraischen Curven. Math. Ann. 10, 189–198 (1876). https://doi.org/10.1007/BF01442458

    Article  MathSciNet  MATH  Google Scholar 

  25. Hicks, J.: Tropical Lagrangian hypersurfaces are unobstructed. J. Topol. 13(4), 1409–1454 (2020). https://doi.org/10.1112/topo.12165

    Article  MathSciNet  MATH  Google Scholar 

  26. Hilbert, D.: Mathematical problems. Bull. Amer. Math. Soc. 8, 437–479 (1902), https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-8/issue-10/Mathematical-problems/bams/1183417035.full

  27. Iliman, S., de Wolff, T.: Amoebas, nonnegative polynomials, and sums of squares supported on circuits. Res. Math. Sci. (2016). https://doi.org/10.1186/s40687-016-0052-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Jensen, A., Leykin, A., Yu, J.: Computing tropical curves via homotopy continuation. Exp. Math. 25(1), 83–93 (2016). https://doi.org/10.1080/10586458.2015.1037407

    Article  MathSciNet  MATH  Google Scholar 

  29. Johansson, P.: On the topology of the coamoeba. Ph.D. thesis, Stockholm University, Sweden (2014), http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A715770 &dswid=-3042

  30. Johansson, P., Kalm, H.S.: A Ronkin type function for coamoebas. J. Geom. Anal. 27(1), 643–670 (2017). https://doi.org/10.1007/s12220-016-9693-z

    Article  MathSciNet  MATH  Google Scholar 

  31. Jonsson, M.: Degenerations of amoebae and Berkovich spaces. Math. Ann. 364(1–2), 293–311 (2016). https://doi.org/10.1007/s00208-015-1210-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Juhnke-Kubitzke, M., de Wolff, T.: Intersections of amoebas. In: 28th International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2016. pp. 659–670. Vancouver, USA (2016), https://doi.org/10.46298/dmtcs.6375

  33. Kaveh, K., Manon, C.: Gröbner theory and tropical geometry on spherical varieties. Transform. Groups 24(4), 1095–1145 (2019). https://doi.org/10.1007/s00031-019-09536-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Kenyon, R.: An introduction to the dimer model (2008), https://arxiv.org/pdf/math/0310326.pdf

  35. Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006). https://doi.org/10.1215/S0012-7094-06-13134-4

    Article  MathSciNet  MATH  Google Scholar 

  36. Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. 163(3), 1019–1056 (2006). https://doi.org/10.4007/annals.2006.163.1019

    Article  MathSciNet  MATH  Google Scholar 

  37. Khovanskii, A.: Translations of Mathematical Monographs. Fewnomials. American Mathematical Society, Pawtucket (1991). https://doi.org/10.1090/mmono/088

    Book  Google Scholar 

  38. Kim, Y., Nisse, M.: A natural topological manifold structure of phase tropical hypersurfaces. J. Korean Math. Soc. 58(2), 451–471 (2021). https://doi.org/10.4134/JKMS.j200132

    Article  MathSciNet  MATH  Google Scholar 

  39. Lang, L.: Amoebas of curves and the Lyashko-Looijenga map. J. Lond. Math. Soc. 100(1), 301–322 (2019). https://doi.org/10.1112/jlms.12214

    Article  MathSciNet  MATH  Google Scholar 

  40. Lang, L.: Harmonic tropical morphisms and approximation. Math. Ann. 377(1–2), 379–419 (2020). https://doi.org/10.1007/s00208-020-01971-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Lang, L., Shapiro, B., Shustin, E.: On the number of intersection points of the contour of an amoeba with a line. Indiana Univ. Math. J. 70(4), 1335–1353 (2021). https://doi.org/10.1512/iumj.2021.70.8627

    Article  MathSciNet  MATH  Google Scholar 

  42. Leksell, M., Komorowski, W.: Amoeba program: computing and visualizing amoebas for some complex-valued bivariate expressions (2007), http://qrf.servequake.com/amoeba/AmoebaProgram.pdf

  43. Lyapin, A.: Riordan’s arrays and two-dimensional difference equations. J. Sib. Fed. Univ. Math. Phys. 2(2), 210–220 (2009), https://www.mathnet.ru/links/0f23ed09125459c04ae0fb47dbc5f6a4/jsfu66.pdf

  44. Maslov, V.: Generalization of tropical geometry and amebas to the region of negative pressures: comparison with van der Waals gas. Math. Notes 98(3–4), 429–440 (2015). https://doi.org/10.1134/S0001434615090084

    Article  MATH  Google Scholar 

  45. Mikhalkin, G.: Real algebraic curves, the moment map and amoebas. Ann. Math. 151(1), 309–326 (2000). https://doi.org/10.2307/121119

    Article  MathSciNet  MATH  Google Scholar 

  46. Mikhalkin, G.: Amoebas of algebraic varieties and tropical geometry. In: different faces of geometry. International Mathematical Series (N.Y) 3, pp. 257–300. Kluwer (2004), https://doi.org/10.1007/0-306-48658-X_6

  47. Mikhalkin, G.: Tropical geometry and its applications. In: International Congress of Mathematicians, ICM 2006. vol. 2, pp. 827–852 (2006), https://doi.org/10.4171/022-2/40

  48. Mikhalkin, G.: Amoebas of half-dimensional varieties. Trends Math. 9783319524696, 349–359 (2017). https://doi.org/10.1007/978-3-319-52471-9_21

    Article  MathSciNet  MATH  Google Scholar 

  49. Mikhalkin, G., Rullgård, H.: Amoebas of maximal area. Int. Math. Res. Not. 2001(9), 441–451 (2001). https://doi.org/10.1155/S107379280100023X

    Article  MathSciNet  MATH  Google Scholar 

  50. Mikhalkin, G., Shkolnikov, M.: Non-commutative amoebas. Bull. Lond. Math. Soc. 54(2), 335–368 (2022). https://doi.org/10.1112/blms.12622

    Article  MathSciNet  MATH  Google Scholar 

  51. Mkrtchian, M., Yuzhakov, A.: The Newton polytope and the Laurent series of rational functions of \(n\) variables. Izv. Akad. Nauk ArmSSR 17, 99–105 (1982), https://arar.sci.am/publication/122533

  52. Nilsson, L.: Amoebas, discriminants, and hypergeometric functions. Ph.D. thesis, Stockholm University, Sweden (2009)

  53. Nilsson, L., Passare, M., Tsikh, A.: Domains of convergence for a-hypergeometric series and integrals. J. Sib. Fed. Univ. - Math. Phys. 12(4), 509–529 (2019). https://doi.org/10.17516/1997-1397-2019-12-4-509-529

    Article  MathSciNet  MATH  Google Scholar 

  54. Nisse, M.: Amoeba basis of zero-dimensional varieties. J. Pure Appl. Algebra 220(3), 1252–1257 (2016). https://doi.org/10.1016/j.jpaa.2015.08.018

    Article  MathSciNet  MATH  Google Scholar 

  55. Nisse, M., Sadykov, T.: Amoeba-shaped polyhedral complex of an algebraic hypersurface. J. Geom. Anal. 29(2), 1356–1368 (2019). https://doi.org/10.1007/s12220-018-0041-3

    Article  MathSciNet  MATH  Google Scholar 

  56. Passare, M.: The trigonometry of Harnack curves. J. Sib. Fed. Univ. - Math. Phys. 9(3), 347–352 (2016). https://doi.org/10.17516/1997-1397-2016-9-3-347-352

    Article  MATH  Google Scholar 

  57. Passare, M., Pochekutov, D., Tsikh, A.: Amoebas of complex hypersurfaces in statistical thermodynamics. Math. Phys. Anal. Geom. 16, 89–108 (2013). https://doi.org/10.1007/s11040-012-9122-x

    Article  MathSciNet  MATH  Google Scholar 

  58. Passare, M., Rullgård, H.: Amoebas, Monge-Ampére measures and triangulations of the Newton polytope. Duke Math. J. 121(3), 481–507 (2004). https://doi.org/10.1215/S0012-7094-04-12134-7

    Article  MathSciNet  MATH  Google Scholar 

  59. Passare, M., Sadykov, T., Tsikh, A.: Singularities of hypergeometric functions in several variables. Compos. Math. 141(3), 787–810 (2005). https://doi.org/10.1112/S0010437X04001411

    Article  MathSciNet  MATH  Google Scholar 

  60. Passare, M., Tsikh, A.: Algebraic equations and hypergeometric series. In: Laudal, O.A., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 653–672. Springer, Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-642-18908-1_21

    Chapter  Google Scholar 

  61. Purbhoo, K.: A Nullstellensatz for amoebas. Duke Math. J. 141(3), 407–445 (2008). https://doi.org/10.1215/00127094-2007-001

    Article  MathSciNet  MATH  Google Scholar 

  62. Ruan, W.D.: Newton polygon and string diagram. Comm. Anal. Geom. 15(1), 77–119 (2007). https://doi.org/10.4310/CAG.2007.V15.N1.A3

    Article  MathSciNet  MATH  Google Scholar 

  63. Sadykov, T., Tsikh, A.: Hypergeometric and Algebraic Functions in Several Variables (in Russian). Nauka, Moscow, Russia (2019), https://www.rfbr.ru/rffi/ru/books/o_1923557#1

  64. Theobald, T.: Computing amoebas. Exp. Math. 11(4), 513–526 (2002). https://doi.org/10.1080/10586458.2002.10504703

    Article  MathSciNet  MATH  Google Scholar 

  65. Theobald, T., de Wolff, T.: Approximating amoebas and coamoebas by sums of squares. Math. Comput. 84(291), 455–473 (2015). https://doi.org/10.1090/S0025-5718-2014-02828-7

    Article  MathSciNet  MATH  Google Scholar 

  66. Theobald, T., de Wolff, T.: Norms of roots of trinomials. Math. Ann. 366(1–2), 219–247 (2016). https://doi.org/10.1007/s00208-015-1323-8

    Article  MathSciNet  MATH  Google Scholar 

  67. Timme, S.: Fast computation of amoebas, coamoebas and imaginary projections in low dimensions (2018)

  68. de Wolff, T.: Amoebas and their tropicalizations - a survey. Anal. Meets Geom. (2017). https://doi.org/10.1007/978-3-319-52471-9_12

    Article  MATH  Google Scholar 

  69. Yger, A.: Tropical geometry and amoebas. Université Bordeaux 1, France (2016), https://cel.hal.science/cel-00728880/document

  70. Zahabi, A.: Quiver asymptotics and amoeba: instantons on toric Calabi-Yau divisors. Phys. Rev. D (2021). https://doi.org/10.1103/PhysRevD.103.086024

    Article  MathSciNet  Google Scholar 

  71. Zhukov, T., Sadykov, T.: Computing the connected components of the complement to the amoeba of a polynomial in several complex variables. Program. Comput. Softw. 49(2), 133–141 (2023). https://doi.org/10.1134/S0361768823020159

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly A. Krasikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by a grant from the Russian Science Foundation No.22-21-00556, https://rscf.ru/project/22-21-00556/.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasikov, V.A. A Survey on Computational Aspects of Polynomial Amoebas. Math.Comput.Sci. 17, 16 (2023). https://doi.org/10.1007/s11786-023-00570-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11786-023-00570-x

Keywords

Mathematics Subject Classification

Navigation