Abstract
The logical hexagon (or hexagon of opposition) is a strange, yet beautiful, highly symmetrical mathematical figure, mysteriously intertwining fundamental logical and geometrical features. It was discovered more or less at the same time (i.e. around 1950), independently, by a few scholars. It is the successor of an equally strange (but mathematically less impressive) structure, the “logical square” (or “square of opposition”), of which it is a much more general and powerful “relative”. The discovery of the former did not raise interest, neither among logicians, nor among philosophers of logic, whereas the latter played a very important theoretical role (both for logic and philosophy) for nearly two thousand years, before falling in disgrace in the first half of the twentieth century: it was, so to say, “sentenced to death” by the so-called analytical philosophers and logicians. Contrary to this, since 2004 a new, unexpected promising branch of mathematics (dealing with “oppositions”) has appeared, “oppositional geometry” (also called “n-opposition theory”, “NOT”), inside which the logical hexagon (as well as its predecessor, the logical square) is only one term of an infinite series of “logical bi-simplexes of dimension m”, itself just one term of the more general infinite series (of series) of the “logical poly-simplexes of dimension m”. In this paper we recall the main historical and the main theoretical elements of these neglected recent discoveries. After proposing some new results, among which the notion of “hybrid logical hexagon”, we show which strong reasons, inside oppositional geometry, make understand that the logical hexagon is in fact a very important and profound mathematical structure, destined to many future fruitful developments and probably bearer of a major epistemological paradigm change.
Similar content being viewed by others
References
Aristotle: Categories and De Interpretatione. (Translated with notes by J.L. Ackrill). Clarendon Aristotle Series, Oxford (1963)
Badir, S.: How the semiotic square came. In: [8]
Béziau J.-Y.: From paraconsistent to universal logic. Sorites 12, 5–32 (2001)
Béziau J.-Y.: New light on the square of oppositions and its nameless corner. Log. Investig. 10, 218–233 (2003)
Béziau J.-Y.: Paraconsistent Logics! (a reply to Slater). Sorites 17, 17–25 (2006)
Béziau J.-Y.: The power of the Hexagon. Log. Universalis 6, 1–2 (2012)
Béziau, J.-Y., Jacquette, D. (eds): Around and Beyond the Square of Opposition. Birkhäuser, Basel (2012)
Béziau, J.-Y., Payette, G. (eds.): The Square of Opposition. A General Framework for Cognition. Peter Lang, Bern (2012)
Bianchi I., Savardi U.: The Perception of Contraries. Aracne, Roma (2008)
Bianchi, I., Savardi, U.: The cognitive dimensions of contrariety. In: [8]
Blanché R.: Sur l’opposition des concepts. Theoria 19, 89–130 (1953)
Blanché R.: Opposition et négation. Rev. Philos. 167, 187–216 (1957)
Blanché R.: Sur la structuration du tableau des connectifs interpropositionnels binaires. J. Symb. Log. 22(1), 17–18 (1957)
Blanché R.: Structures intellectuelles. Essai sur l’organisation systématique des concepts. Vrin, Paris (1966)
Blanché R.: Raison et discours. Défense de la logique réflexive. Vrin, Paris (1967)
Blanché R.: Sur le système des connecteurs interpropositionnels. Cahiers pour l’Analyse 10, 131–149 (1969)
Bonfiglioli S.: Aristotle’s Non-Logical Works and the Square of Oppositions in Semiotics. Logica Universalis 2(1), 107–126 (2008)
Boyd, G.A., Belt, T., Rhoda, A.: The hexagon of opposition: thinking outside the aristotelian box (2008). http://www.gregboyd.org/essays/warning-egghead-essays/the-hexagon-essay/
Cavaliere, F.: Fuzzy syllogisms, numerical square, triangle of contraries, inter-bivalence. In: [7]
Chellas B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)
Czezowski T.: On certain peculiarities of singular propositions. Mind 64(255), 392–395 (1955)
Demey, L.: Reversed Squares of Opposition in PAL and DEL (2010). http://www.square-of-opposition.org/square2010power/demey.pdf
Demey, L.: Structures of oppositions in public announcement Logic. In: [7]
Dubois D., Prade H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Log. Universalis 6, 1–2 (2012)
Fontanille J., Zilberberg C.: Tension et signification. Mardaga, Sprimont (1998)
Gaiser K.: Platons ungeschriebene Lehre. Ernst Klett Verlag, Stuttgart (1962)
Gallais P.: Dialectique du récit médiéval (Chrétien de Troyes et l’hexagone logique). Rodopi, Amsterdam (1982)
Ganter B., Wille R.: Formale Begriffsanalyse. Mathematische Grundlagen. Springer, Berlin (1996)
Gärdenfors P.: Conceptual Spaces The Geometry of Thought. MIT Press, Cambridge MA (2000)
Gardies J.-L.: Essai sur la logique des modalités. Presses Universitaires de France, Paris (1979)
Ginzberg S.: Note sur le sens équivoque des propositions particulières. Revue de Métaphysique et de Morale 21(1), 101–106 (1913)
Gottschalk W.H.: The theory of quaternality. J. Symb. Log. 18, 193–196 (1953)
Greimas A.J.: Du sens. Seuil, Paris (1970)
Groupe d’Entrevernes: Analyse sémiotique des textes—Introduction Théorie Pratique. Presses Universitaires de Lyon, Lyon (1979)
Guitart, R.: Borromean Objects, as examplified by the group G 168 of Klein’s Quartic, linked with Moving Logic (2008). http://www-lmpa.univ-littoral.fr/CT08/slides/Guitart.ppt
Guitart R.: A hexagonal framework of the field F 4 and the associated Borromean logic. Logica Universalis 6, 1–2 (2012)
Horn L.: A Natural History of Negation. CSLI Publications, Stanford (2001)
Horn, L.: Histoire d’*O: Lexical pragmatics and the geometry of opposition. In: [8]
Hösle V.: I fondamenti dell’aritmetica e della geometria in Platone. Vita e Pensiero, Milano (1994)
Hruschka J., Joerden J.C.: Supererogation: Vom deontologischen Sechseck zum deontologischen Zehneck. Zugleich ein Beitrag zur strafrechtlichen Grundlagenforschung. Archiv für Rechts- und Sozialphilosophie 73(1), 104–120 (1987)
Hughes G.E., Cresswell M.J: A New Introduction to Modal Logic. Routledge, London (1987)
Ioan P.: Stéphane Lupasco et la propension vers le contradictoire dans la logique roumaine. In: Badescu, H., Nicolescu, B. (eds) Stéphane Lupasco, L’homme et l’oeuvre, Rocher, Monaco (1999)
Jacoby P.: A triangle of opposites for types of propositions in Aristotelian logic. New Scholast 24, 32–56 (1950)
Jacquette, D.: Thinking outside the square of opposition box. In: [7]
Jaspers, D.: Logic of colours. The mereological algebra of colours (2010). http://www.crissp.be/pdf/publications/handoutmitdj.pdf
Jaspers D.: Logic of Colours in Historical Perspective. Log. Universalis 6, 1–2 (2012)
Jaspers, D., Larson, R.: Oppositions between quantifiers, colours and numerals—broad and narrow language faculties (2011). https://lirias.hubrussel.be/handle/123456789/5644
Jespersen O.: The Philosophy of Grammar. Allen and Unwin, London (1924)
Kalinowski G.: La logique des normes. Presses Universitaires de France, Paris (1972)
Khomski, Y.: William of sherwood, singular propositions and the hexagon of opposition. In: [8]
Koslow A.: A Structuralist Theory of Logic. Cambridge University Press, Cambridge (1992)
Lupasco S.: Le principe d’antagonisme et la logique de l’énergie. Hermann, Paris (1951)
Luzeaux D., Sallantin J., Dartnell C.: Logical extensions of Aristotle’s square. Log. Universalis 2(1), 167–187 (2008)
Milner J.-C.: Le périple structural. Figures et paradigme. Verdier, Paris (2002)
Moretti A.: Geometry for Modalities? Yes: through ‘n-opposition theory’. In: Béziau, J.-Y., Costa-Leite, A., Facchini, A. (eds) Aspects of Universal Logic, University of Neuchâtel, Neuchâtel (2004)
Moretti, A.: The Geometry of Logical Opposition. PhD Thesis, University of Neuchâtel, Switzerland (2009)
Moretti A.: The Geometry of Standard Deontic Logic. Log. Universalis 3(1), 19–57 (2009)
Moretti, A.: The geometry of opposition and the opposition of logic to it. In: [78]
Moretti A.: The critics of paraconsistency and of many-valuedness and the geometry of oppositions. Log. Log. Philos. 19, 63–94 (2010)
Moretti, A.: From the “logical square” to the “logical poly-simplexes”: a quick survey of what happened in between. In: [8]
Moretti, A.: A cube extending Piaget’s and Gottschalk’s formal square (2010). http://alessiomoretti.perso.sfr.fr/NOTMorettiCorte2010.pdf
Mugler C.: Platon et la recherche mathématique de son époque. Heitz, Strasbourg-Zurich (1948)
Neuman Y.: A Novel Generic Conception of Structure: Solving Piaget’s Riddle. In: Valsiner, J., Rudolph, R. (eds) Mathematical Models for Research on Cultural Dynamics: Qualitative Methods for the Social Sciences, Routledge, London (2010)
Øhrstrøm P., Hasle P.: A.N. Prior’s Rediscovery of Tense Logic. Erkenntnis 39, 23–50 (1993)
Parsons, T.: The traditional square of opposition. Stanford Encyclopedia of Philosophy (2006). http://plato.stanford.edu/entries/square/
Peirce, C.S.: The new elements of mathematics, vol. III-1. In: Eisele, C. (ed.) The Hague-Paris. Walter De Gruyter, New York (1976)
Pellissier R.: “Setting” n-opposition. Log. Universalis 2(2), 235–263 (2008)
Pellissier, R.: 2-opposition and the topological hexagon. In: [8]
Piaget J.: Traité de logique. Essai de syllogistique opératoire. Armand Colin, Paris (1949)
Piaget J.: Structuralism. Basic Books, New York (1970)
Read, S.: John Buridan’s theory of consequence and his octagons of oppositions. In: [7]
Reale G.: Per una nuova interpretazione di Platone. Rilettura della metafisica dei grandi dialoghi alla luce delle “Dottrine non scritte”. Vita e Pensiero, Milano (1984)
Richard M.-D.: L’enseignement oral de Platon Une nouvelle interprétation du platonisme. Cerf, Paris (1986)
Ricoeur, P.: La grammaire narrative de Greimas. Actes Sémiot. Doc. 15 (1980)
Sart, F.: Truth tables and oppositional solids (2010). http://alessiomoretti.perso.sfr.fr/NOTSartCorte2010.pdf
Sauriol P.: Remarques sur la Théorie de l’hexagone logique de Blanché. Dialogue 7, 374–390 (1968)
Sauriol P.: La structure tétrahexaédrique du système complet des propositions catégoriques. Dialogue 15, 479–501 (1976)
Savardi, U. (ed.): The perception and cognition of contraries. McGraw-Hill, Milano (2009)
Sesmat A.: Logique II. Les raisonnements, la logistique. Hermann, Paris (1951)
Seuren, P.A.M.: From logical intuitions to natural logic. In: [8]
Smessaert H.: On the 3D visualisation of logical relations. Log. Universalis 3(2), 303–332 (2009)
Smessaert H.: The classical Aristotelian hexagon versus the modern duality hexagon. Log. Universalis 6, 1–2 (2012)
Staschok M.: Non-traditional squares of predication and quantification. Log. Universalis 2(1), 77–85 (2008)
Strößner, C., Strobach, N.: Veridications and their square of oppositions. In: [8]
Thomas R.: Analyse et synthèse de réseaux de régulations en termes de boucles de rétroaction. In: Felz, B., Crommelinck, M., Goujon, P. (eds) Auto-organisation et émergence dans les sciences de la vie., Ousia, Bruxelles (1999)
Toth I.: Aristotele e i fondamenti assiomatici della geometria. Prolegomeni alla comprensione dei frammenti non-euclidei nel “Corpus Aristotelicum”. Vita e Pensiero, Milano (1997)
Vasil’ev, N.A.: O chastnykh suzhdeniiakh, o treugol’nike protivopolozhnostei, o zakone iskliuchennogo chetvertogo. In: Voobrazhaemaia logika. Izbrannye trudy. Nauka, Moskow (1989) (in Russian)
Vernant D.: Pour une logique dialogique de la dénégation, In: Armengaud, F., Popelard, M.-D., Vernant, D. (eds.) Du dialogue au texte. Autour de Francis Jacques. Kimé, Paris (2003)
Wirth O.: Le symbolisme astrologique. Dervy, Paris (1973)
N-opposition theory (website) http://alessiomoretti.perso.sfr.fr/NOTHome.html
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Moretti, A. Why the Logical Hexagon?. Log. Univers. 6, 69–107 (2012). https://doi.org/10.1007/s11787-012-0045-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11787-012-0045-x