Skip to main content
Log in

A Short Note on Essentially Σ1 Sentences

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

Guaspari (J Symb Logic 48:777–789, 1983) conjectured that a modal formula is it essentially Σ1 (i.e., it is Σ1 under any arithmetical interpretation), if and only if it is provably equivalent to a disjunction of formulas of the form \({\square{B}}\) . This conjecture was proved first by A. Visser. Then, in (de Jongh and Pianigiani, Logic at Work: In Memory of Helena Rasiowa, Springer-Physica Verlag, Heidelberg-New York, pp. 246–255, 1999), the authors characterized essentially Σ1 formulas of languages including witness comparisons using the interpretability logic ILM. In this note we give a similar characterization for formulas with a binary operator interpreted as interpretability in a finitely axiomatizable extension of IΔ 0  + Supexp and we address a similar problem for IΔ 0  + Exp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berarducci A.: The interpretability logic of Peano Arithmetic. J. Symb. Logic 55, 1050–1089 (1990)

    MathSciNet  Google Scholar 

  2. de Jongh, D., Japaridze, G.: The logic of provability. In: Buss, S. (ed.) Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics, vol. 137, pp. 475–546.

  3. Elsevier, Amsterdam (1998)de Jongh, D., Pianigiani, D.: Solution of a problem of D. Guaspari. In: Orlowska, E. (ed.) Logic at Work: In Memory of Helena Rasiowa, pp. 246–255. Springer-Physica Verlag, Heidelberg-New York (1999)

  4. de Jongh, D., Veltan, F.: Provability logics for relative interpretability. In: Petkov, P. (eds.) Mathematical Logic, Proceedings of the Heyting 1988 Summer School in Varna, pp. 31–42. Plenum Press, Boston (1990)

  5. Guaspari D.: Sentences implying their own provability. J. Symb. Logic 48, 777–789 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goris E., Joosten J.J.: Modal matters for interpretability logics. Logic J. IGPL 16(4), 371–412 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goris E., Joosten J.J.: Self provers and Σ1 sentences. Logic J. IGPL 20(1), 1–21 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guaspari D., Solovay R.: Rosser sentences. Ann. Math. Logic 16, 81–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hájek P., Montagna F.: The logic of Π1-conservativity. Archiv für Mathematische Logik und Grundlagenforschung 30, 113–123 (1990)

    MATH  Google Scholar 

  10. Hájek P., Montagna F.: The logic of Π1-conservativity continued. Archiv für Mathematische Logik und Grundlagenforschung 32, 57–63 (1992)

    MATH  Google Scholar 

  11. Kalsbeek, M.B.: Towards the interpretability logic of IΔ0 + Exp, Technical Report. Logic Group Preprint Series n. 61, Faculteit Wijsbegeerte van de Universiteit Utrecht (1991)

  12. Kent C.F.: The relation of A to \({Prov(\lceil A\rceil)}\) in the Lindenbaum sentence algebra. J. Symbol. Logic 38, 359–367 (1973)

    Article  MathSciNet  Google Scholar 

  13. Smorynski C.: Self-reference and modal logic. Springer, New York (1985)

    Book  MATH  Google Scholar 

  14. Solovay R.: Provability interpretations of modal logic. Israel J. Math. 25, 287–304 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Visser, A.: Interpretability logic. In: Petkov, P. (ed.) Mathematical Logic, Proceedings of the Heyting 1988, Summer School in Varna, pp. 175–209. Plenum Press, Boston (1990)

  16. Visser, A.: An overview of interpretability logic. In: Kracht, M., de Rijke, M., Wansing, H. (eds.) Advanced in Modal Logic ’96. pp. 307–359. CSLI Publications, Stanford (1997)

  17. Visser A.: A course on bimodal provability logic. Ann. Pure Appl. Logic 73, 109–142 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Pianigiani.

Additional information

The present paper is dedicated to Dick De Jongh

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montagna, F., Pianigiani, D. A Short Note on Essentially Σ1 Sentences. Log. Univers. 7, 103–111 (2013). https://doi.org/10.1007/s11787-012-0070-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-012-0070-9

Mathematics Subject Classification (2010)

Keywords

Navigation