Skip to main content
Log in

Weakening and Extending \({\mathbb{Z}}\)

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

By weakening an inference rule satisfied by logic daC, we define a new paraconsistent logic (daC '), which is weaker than logic \({{\mathbb{Z}}}\) and G′ 3, enjoys properties presented in daC like the substitution theorem, and possesses a strong negation which makes it suitable to express intutionism. Besides, daC ' helps to understand the relationships among other logics, in particular daC, \({{\mathbb{Z}}}\) and PH1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alcantara, J., Damásio, C.V., Pereira, L.M.: A declarative characterisation of disjunctive paraconsistent answer sets. In: 16th European Conference on Artificial Intelligence (2004)

  2. Aoyama, H., et al.: Lk, lj, dual intuitionistic logic, and quantum logic. Notre Dame J. Formal Log. 45(4), 193–213 (2004)

  3. Béziau J.: The paraconsistent logic Z. A possible solution to jaśkowski’s problem. Log. Log. Philos. 15, 99–111 (2006)

    MATH  Google Scholar 

  4. Béziau J.-Y.: The future of paraconsistent logic. Log. Stud. 2, 1–23 (1999)

    Google Scholar 

  5. Béziau, J.-Y.: What is paraconsistent logic?. In: Frontiers of Paraconsistent Logics, pp. 95–112. Research Studies Press, Baldock (2000)

  6. Béziau J.-Y.: Paraconsistent logic from a modal viewpoint. J. Appl. Log. 3(1), 7–14 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Beziau, J.-Y., Jacquette, D., (eds.): Around and Beyond the Square of Opposition (Studies in Universal Logic). Birkhäuser (2012)

  8. Cresswell, M.J., Hughes, G.E.: A New Introduction to Modal Logic. Routledge, New York, London (1996)

  9. Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Handbook of Philosophical Logic, vol. 14, pp. 1–93. Springer, Netherlands (2007)

  10. Carnielli W.A., Marcos J.: Limits for paraconsistent calculi. Notre Dame J. Formal Log. 40(3), 375–390 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Paraconsistency: The Logical Way to the Inconsistent, Proceedings of the Second World Congress on Paraconsistency (WCP 2000), Number 228 in Lecture Notes in Pure and Applied Mathematics, pp. 1–94. Marcel Dekker, Inc. (2002)

  12. Carnielli W.A., Marcos J., Amo R.D.: Formal inconsistency and evolutionary databases. Log. Log. Philos. 8, 115–152 (2000)

    Article  MATH  Google Scholar 

  13. Castiglioni, J.L., Ertola, R.: Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation. Log. J. IGLP. 22, 268–273 (2014)

  14. da Costa, N.: On the theory of inconsistent formal systems (in Portuguese). Ph.D. thesis, Curitiva: Editora UFPR, Brazil (1963)

  15. Došen K.: Negative modal operators in intuitionistic logic. Publications de l’Institut MathBématique. Nouvelle SBérie 35(49), 3–14 (1984)

    Google Scholar 

  16. Došen K.: Negation as a modal operator. Rep. Math. Log. 20, 15–27 (1986)

    MATH  Google Scholar 

  17. Došen, K.: Negation in the ligtht of modal logic, pp. 77–86. In: Gabbay, D.M., Wansing, H. (eds), What is Negation?. Kluwer, Dordrecht (1999)

  18. Eiter, T., Fink, M., ao Moura, J.: Paracoherent answer set programming. In: IN Twelfth International Conference on the Principles of Knowledge Representation and Reasoning (KR 2010) (2010)

  19. Ferguson T.M.: Extensions of Priest-da Costa logic. Stud. Log. 102(1), 145–174 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ferguson, T.M.: Lukasiewicz negation and many-valued extensions of constructive logics. In: Proceedings of the 44th International Symposium on Multiple-Valued Logic, pp. 121–127. IEEE Computer Society Press (2014)

  21. Fink, M.: Paraconsistent hybrid theories. In: In Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (2012)

  22. Goldblatt, R.: Logics of Time and Computation. CSLI Publications, Stanford (1992)

  23. GorBé, R.: Dual intuitionistic logic revisited. In: Dyckhoff, R. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, pp. 252–267. Springer, Berlin (2000)

  24. Marcos J.: Nearly every normal modal logic is paranormal. Logique Et Analyse 48, 279–300 (2005)

    MATH  MathSciNet  Google Scholar 

  25. Mendelson, E.: Introduction to Mathematical Logic, 3rd edn. Wadsworth, Belmont (1987)

  26. Minsky, M.: A framework for representing knowledge. In: Winston, P., (ed.) The Psychology of Computer Vision, pp. 211–277. Mcgraw-Hill, New York (1975)

  27. Mruczek-Nasieniewska K., Nasieniewski M.: Syntactical and Semantical Characterization of a Class of Paraconsistent Logics. Bull. Sect. Log. 34(4), 229–248 (2005)

    MATH  MathSciNet  Google Scholar 

  28. Nasieniewski, M.: Logics expressible by modalities, [in Polish]. Nicolaus Copernicus University Press, Toruń (2011)

  29. Omori H., Waragai T.: On Béziau’s logic Z. Log. Log. Philos. 17, 305–317 (2008)

    MATH  MathSciNet  Google Scholar 

  30. Osorio, M., Borja,V., Arrazola, J.: Revisiting Da Costa logic. J. Appl. Log. (2015) (submmited)

  31. Osorio M., Carballido J.L.: Brief study of G’3 logic. J. Appl. Non-Class. Log. 18(4), 475–499 (2008)

    Article  MATH  Google Scholar 

  32. Osorio M., Carballido J.L., Zepeda C.: Revisiting \({\mathbb{Z}}\). Notre Dame J. Formal Log. 55(1), 129–155 (2014)

    Article  MathSciNet  Google Scholar 

  33. Osorio, M., Navarro, J.A.: Modal logic S52 and PFOUR (abstract). In: 2003 Annual Meeting of the Association for Symbolic Logic, Chicago (June 2003)

  34. Osorio M., Navarro J.A., Arrazola J., Borja V.: Ground nonmonotonic modal logic S5: new results. J. Log. Comput. 15(5), 787–813 (2005)

    Article  MATH  Google Scholar 

  35. Osorio M., Navarro J.A., Arrazola J., Borja V.: Logics with common weak completions. J. Log. Comput. 16(6), 867–890 (2006)

    Article  MATH  Google Scholar 

  36. Priest G.: Dualising intuitionistic negation. Principia 13(2), 165–184 (2009)

    Article  Google Scholar 

  37. Scroggs S.J.: Extensions of the Lewis system S5. J. Symbolic Log. 16(2), 112–120 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  38. Sette A.M.: On the propositional calculus P 1. Math. Jpn. 18(04), 181–203 (1973)

    MathSciNet  Google Scholar 

  39. Shramko Y.: Dual intuitionistic logic and a variety of negations: the logic of scientific research. Stud. Log. 80(2–3), 347–367 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Urbas I.: Dual-intuitionistic logic. Notre Dame J. Formal Log. 37(3), 440–451 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  41. van Dalen, D.: Logic and Structure, 2nd edn. Springer, Berlin (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Zepeda.

Additional information

This work was completed with the support of our \({\mathrm{T_{E}X}}\)-pert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osorio, M., Carballido, J.L., Zepeda, C. et al. Weakening and Extending \({\mathbb{Z}}\) . Log. Univers. 9, 383–409 (2015). https://doi.org/10.1007/s11787-015-0128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-015-0128-6

Mathematics Subject Classification

Keywords

Navigation