Skip to main content
Log in

Probability Logics for Reasoning About Quantum Observations

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

In this paper we present two families of probability logics (denoted QLP and \(QLP^{ORT}\)) suitable for reasoning about quantum observations. Assume that \(\alpha \) means “O = a”. The notion of measuring of an observable O can be expressed using formulas of the form \(\square \lozenge \alpha \) which intuitively means “if we measure O we obtain \(\alpha \)”. In that way, instead of non-distributive structures (i.e., non-distributive lattices), it is possible to relay on classical logic extended with the corresponding modal laws for the modal logic \({\textbf{B}}\). We consider probability formulas of the form \(CS_{z_{1},\rho _{1}; \ldots ; z_{m},\rho _{m}} \square \lozenge \alpha \) related to an observable O and a possible world (vector) w: if a is an eigenvalue of O, \(w_{1}\), ..., \(w_{m}\) form a base of a closed subspace of the considered Hilbert space which corresponds to eigenvalue a, and if w is a linear combination of the basis vectors such that \(w=c_{1}\cdot w_{1}+ \cdots + c_{m}\cdot w_{m}\) for some \(c_{i}\in {\mathbb {C}}\), then \(\Vert c_{1}-z_{1}\Vert \le \rho _{1}\), ..., \(\Vert c_{m}-z_{m}\Vert \le \rho _{m}\), and the probability of obtaining a while measuring O in the state w is equal to \(\Sigma _{i=1}^{m}\Vert c_{i}\Vert ^{2}\). Formulas are interpreted in reflexive and symmetric Kripke models equipped with probability distributions over families of subsets of possible worlds that are orthocomplemented lattices, while for \(QLP^{ORT}\) also satisfy ortomodularity. We give infinitary axiomatizations, prove the corresponding soundness and strong completeness theorems, and also decidability for QLP-logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The actual complex numbers depend on d and D. The square modules of the chosen complex numbers correspond to the simple symmetric case, which clearly demonstrates the interference.

References

  1. Abadi, M., Halpern, Y.: Decidability and expressiveness for first-order logics of probability. Inf. Comput. 112, 1–36 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baltag, A., Smets, S.: A dynamic-logical perspective on quantum behavior. Stud. Logica. 89(2), 187–211 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkhoff, G., von Neuman, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  4. Canny, J.: Some algebraic and geometric computations in PSPACE. In: Proceedings of XX ACM Symposium on Theory of Computing, pp. 460–467 (1988)

  5. Cattaneo, G., Dalla Chiara, M., Giuntini, R., Paoli, F.: Quantum logic and nonclassical logics. In: Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures: Quantum Logic, pp. 127–226. North-Holland, Elsevier, Amsterdam (2009)

    Chapter  MATH  Google Scholar 

  6. Chadha, R., Mateus, P., Sernadas, A., Sernadas, C.: Extending classical logic for reasoning about quantum systems. In: Engesser, K., Gabbay, D., Lehmann, D. (eds.) Handbook of Quantum Logic and Quantum Structures, pp. 325–371. North-Holland, Elsevier, Amsterdam (2009)

    Chapter  MATH  Google Scholar 

  7. Clarke, E.M., Emerson, A.: Design and synthesis of synchronization skeletons using branching time temporal logic. In: Proceedings of the Workshop on Logic of Programs (Yorktown Heights, N.Y.), volume 131 of Lecture Notes in Computer Science, pp. 52–71. Springer, Berlin (1981)

  8. Dalla Chiara, M., Giuntini, R.: Reasoning in Quantum theory, Sharp and Unsharp Quantum Logics. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  9. Doder, D., Ognjanović, Z., Marković, Z.: An axiomatization of a first-order branching time temporal logic. J. Univ. Comput. Sci. 16, 1439–1451 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Fagin, R., Halpern, J.Y., Megiddo, N.: A logic for reasoning about probabilities. Inf. Comput. 87, 78–128 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldblatt, R.I.: Semantic analysis of orthologic. J. Philos. Log. 3(1/2), 19–35 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Goldblatt, R.I.: Orthomodularity is not elementary. J. Symb. Logic 49, 401–404 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N., Perović, A.: A \(p\)-adic probability logic. Math. Log. Q. 58(4–5), 263–280 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ilić-Stepić, A., Ognjanović, Z.: Complex valued probability logics. Publications de l’Institut Mathématique, Ns. 95(109), 73–86 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ilić-Stepić, A., Ognjanović, Z.: Logics for reasoning about processes of thinking with information coded by \(p\)-adic numbers. Stud. Logica. 103, 145–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N.: Conditional \(p\)-adic probability logic. Int. J. Approx. Reason. 55(9), 1843–1865 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ilić-Stepić, A., Ognjanović, Z., Ikodinović, N., Perović, A.: \(p\)-Adic probability logics. \(p\)-Adic Numbers Ultrametric Anal. Appl. 8(3), 177–203 (2016)

  18. Kokkinis, I., Maksimović, P., Ognjanović, Z., Studer, T.: First steps towards probabilistic justification logic. Logic J. IGPL 23(4), 662–687 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kramer, S.: Quantum logic as classical logic. Technical Report arXiv:1406.3526 [quant-ph] (2015)

  20. Marinković, B., Glavan, P., Ognjanović, Z., Studer, T.: A temporal epistemic logic with a non-rigid set of agents for analyzing the blockchain protocol. J. Log. Comput. 29(5), 803–830 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marinković, B., Ognjanović, Z., Doder, D., Perović, A.: A propositional linear time logic with time flow isomorphic to \(\omega ^2\). J. Appl. Log. 12(2), 208–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Milošević, M., Ognjanović, Z.: A First-Order Conditional Probability Logic With Iterations. Publications de l’Institut Mathématique, Ns. 93(107), 19–27 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ognjanović, Z.: A completeness theorem for a first order linear-time logic. Publications de l’Institut Mathématique, Ns. 69(83), 1–7 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Ognjanović, Z.: Discrete linear-time probabilistic logics: completeness, decidability and complexity. J. Log. Comput. 16(2), 257–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ognjanović, Z. (ed.): Probabilistic Extensions of Various Logical Systems. Springer, Cham (2020)

  26. Ognjanović, Z., Ilić Stepić, A., Perović, A.: A probabilistic temporal epistemic logic: strong completeness. Logic J. IGPL (2022)

  27. Ognjanović, Z., Rašković, M.: Some first-order probability logics. Theor. Comput. Sci. 247(1–2), 191–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics. Probability-Based Formalization of Uncertain Reasoning. Springer, Cham (2016)

    Book  MATH  Google Scholar 

  29. Perović, A., Ognjanović, Z., Rašković, M., Marković, Z.: How to Restore Compactness into Probabilistic Logics? In: Hölldobler, S., Lutz, C., and Wansing, H. (eds.) Proceedings of the 11th European Conference, JELIA 2008, Dresden, Germany, September 28-October 1, 2008, volume 5293 of Lecture Notes in Computer Science, pp. 338–348. Springer, Berlin (2008)

  30. Pessoa, O.: Towards a modal logical treatment of quantum physics. Log. J. IGPL 13(1), 139–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sernadas, A., Rasga, J., Sernadas, C., Alcace, L., Henriques, A.B.: Probabilistic logic of quantum observations. Technical Report arXiv:1607.08369v2 [math.LO] (2016)

  32. Tomović, S., Ognjanović, Z., Doder, D.: A first-order logic for reasoning about knowledge and probability. ACM Trans. Comput. Log. 21(2), 16:1-16:30 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. van der Meyden, R., Patra, M.: A logic for probability in quantum systems. In: Proceedings of the 17th International Workshop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August 25–30, volume 2803 of Lecture Notes in Computer Science, pp. 427– 440. Springer, Berlin (2003)

  34. Vardi, M.Y.: Why is modal logic so robustly decidable? In: Descriptive Complexity and Finite Models (1996)

  35. Yanofsky, N.S., Mannucci, M.A.: Quantum Computing for Computer Scientists. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Ognjanović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilić Stepić, A., Ognjanović, Z. & Perović, A. Probability Logics for Reasoning About Quantum Observations. Log. Univers. 17, 175–219 (2023). https://doi.org/10.1007/s11787-023-00326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-023-00326-y

Keywords

Mathematics Subject Classification

Navigation