Skip to main content
Log in

Verfahren zur Überwachung räumlicher autoregressiver Prozesse mit externen Regressoren

Statistical surveillance of spatial autoregressive processes with exogenous regressors

  • Originalveröffentlichung
  • Published:
AStA Wirtschafts- und Sozialstatistisches Archiv Aims and scope Submit manuscript

Zusammenfassung

Der vorliegende Beitrag befasst sich mit der statistischen Prozesskontrolle räumlicher autoregressiver Prozesse mit externen Regressoren. Das Ziel ist die Weiterentwicklung etablierter Methoden der zeitlichen Prozesskontrolle. Diese Ansätze werden für Anwendungen in der räumlichen Prozesskontrolle modifiziert. Wir illustrieren dieses Vorgehen anhand eines sozialstatistischen Beispiels, welches sich mit der Bevölkerungsentwicklung in den Landkreisen und Kreisfreien Städten der Bundesrepublik Deutschland befasst. Mittels Faktorenanalyse werden zunächst nicht beobachtbare Variablen basierend auf den zuvor gewählten manifesten Variablen identifiziert, denn für die nachfolgende Analyse sind voneinander unabhängige Faktoren erforderlich. Daraufhin sind anhand einer Clusteranalyse die Regionen in Gruppen einzuteilen. Mit Hilfe der gebildeten Cluster sind diejenigen Regionen, welche die Grundlage der Modellanpassung darstellen, im Zustand unter Kontrolle auszuwählen. Anhand der zuvor ermittelten Faktorwerte erfolgt eine Modellanpassung mit Hilfe der verallgemeinerten Momenten-Methode. Im Rahmen der statistischen Prozesskontrolle werden in einem weiteren Schritt multivariate Kontrollkarten basierend auf entweder exponentieller Glättung oder kumulierter Summe herangezogen, um Kreise außerhalb der Region im Zustand unter Kontrolle hinsichtlich ihres Kontrollzustandes zu beurteilen. Wir stellen verschiedene Ansätze vor, um die zu überwachenden Regionen für eine Prozesskontrolle zu sortieren. Schlussendlich möchten wir zeigen, dass die modifizierten Kontrollkarten strukturelle Veränderungen in Bezug auf ein zuvor geschätztes Modell signalisieren, ohne dass eine permanente Schätzung erforderlich ist.

Abstract

This paper deals with statistical process control of spatial autoregressive models with exogenous regressors. The main purpose is the extension of conventional methods of process control in time series analysis. These approaches are modified for applications of spatial monitoring. The method is illustrated by an example of social statistics dealing with natural as well as spatial population change regarding administrative districts of Germany. Via factor analysis latent variables are identified based on manifest variables, because independent factors are needed for the following analysis. Afterwards, the considered regions are divided into groups via cluster analysis. The results of cluster analysis helps to find a specific region of one cluster that is used for in-control estimation. The previously mentioned model is fitted to factor scores using the generalized method of moments. Multivariate control charts based on either exponential smoothing or cumulative sum are used to evaluate full-sample data regarding their control situation. Accordingly, we propose different approaches to sort the regions to be monitored. Eventually, the modified charts signalize structural changes regarding the model based on in-control data without permanent re-estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9

Literatur

  • Arthur D, Vassilvitskii S (2007) k-means++: the advantage of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, S 1027–1035

    MATH  Google Scholar 

  • Bartlett MS (1937) The statistical conception of mental factors. Br J Psychol 28(1):97–104

    Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Series B Stat Methodol 36(2):192–225

    MathSciNet  MATH  Google Scholar 

  • Blommestein HJ (1983) Specification and estimation of spatial econometric models: a discussion of alternative strategies for spatial economic modelling. Reg Sci Urban Econ 13(2):251–270

    Article  Google Scholar 

  • Bodnar O, Schmid W (2007) Surveillance of the mean behavior of multivariate time series. Stat Neerl 61(4):383–406

    Article  MathSciNet  MATH  Google Scholar 

  • Bundesministerium für Verkehr, Bau und Stadtentwicklung, Bundesamt für Bauwesen und Raumordnung (2008) Raumentwicklungspolitische Ansätze zur Förderung der Wissensgesellschaft. Werkstatt: Praxis 58

    Google Scholar 

  • Cattell RB (1943a) The description of personality: foundations of trait measurement. Psychol Rev 50(6):559–594

    Article  Google Scholar 

  • Cattell RB (1943b) The description of personality: basic traits resolved into clusters. J Abnorm Soc Psychol 38(4):476–506

    Article  Google Scholar 

  • Cattell RB (1945) The description of personality: principles and findings in a factor analysis. Am J Psychol 58(1):69–90

    Article  Google Scholar 

  • Forgy E (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21(3):768–769

    Google Scholar 

  • Garthoff R, Otto P (2017) Control charts for multivariate spatial autoregressive models. AStA Adv Stat Anal 101(1):67–94

    Article  MathSciNet  Google Scholar 

  • Garthoff R, Okhrin I, Schmid W (2014) Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series. AStA Adv Stat Anal 98(3):225–255

    Article  MathSciNet  Google Scholar 

  • Garthoff R, Okhrin I, Schmid W (2015) Control charts for multivariate nonlinear time series. Revstat Stat J 13(2):131–144

    MathSciNet  MATH  Google Scholar 

  • Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50(4):1029–1054

    Article  MathSciNet  MATH  Google Scholar 

  • Heaton MJ, Christensen WF, Terres MA (2017) Nonstationary Gaussian process models using spatial hierarchical clustering from finite differences. Technometrics 59(1):93–101

    Article  MathSciNet  Google Scholar 

  • Hotelling H (1947) Multivariate quality control: illustrated by the air testing of sample bombsights. In: Eisenhart C, Hastay M, Wallis M (Hrsg) Techniques of statistical analysis, S 111–184

    Google Scholar 

  • Huang D, Anh VV (1992) Estimation of spatial ARMA models. Aust N Z J Stat 34(3):513–530

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JS (1984) The autoregressive moving average model for spatial analysis. Aust N Z J Stat 26(2):169–178

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang BC, Jiang SJ (1998) Machine vision based inspection of oil seals. J Manuf Syst 17(3):159–166

    Article  Google Scholar 

  • Jiang BC, Wang CC, Liu HC (2005) Liquid crystal display surface uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques. Int J Prod Res 43(1):67–80

    Article  MATH  Google Scholar 

  • Jiang W, Han SW, Tsui KL, Woodall WH (2011) Spatiotemporal surveillance methods in the presence of spatial correlation. Stat Med 30(5):569–583

    Article  MathSciNet  Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Article  MATH  Google Scholar 

  • Kaiser HF (1959) Computer program for varimax rotation in factor analysis. Educ Psychol Meas 19(3):413–420

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Finance Econ 17(1):99–121

    Article  Google Scholar 

  • Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev (Philadelphia) 40(2):509–533

    Article  MathSciNet  Google Scholar 

  • Lee LF (2002) Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econ Theory 18(2):252–277

    Article  MathSciNet  MATH  Google Scholar 

  • Lee LF (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925

    Article  MathSciNet  MATH  Google Scholar 

  • Lee LF, Liu X (2010) Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances. Econ Theory 26(1):187–230

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137

    Article  MathSciNet  MATH  Google Scholar 

  • Lowry C, Woodall WH, Champs C, Rigdon S (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34(1):46–53

    Article  MATH  Google Scholar 

  • MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, S 281–297

    MATH  Google Scholar 

  • Megahed FM, Woodall WH, Camelio JA (2011) A review and perspective on control charting with image data. J Qual Technol 43(2):83–98

    Article  Google Scholar 

  • Megahed FM, Wells LJ, Camelio JA, Woodall WH (2012) A spatiotemporal method for the monitoring of image data. Qual Reliab Eng Int 28(8):967–980

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrica 37(1):17–23

    Article  MathSciNet  MATH  Google Scholar 

  • Ord K (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 30(349):120–126

    Article  MathSciNet  MATH  Google Scholar 

  • Otto P, Schmid W (2016) Detection of spatial change points in the mean and covariances of multivariate simultaneous autoregressive models. Biom J 58(5):1113–1137

    Article  MathSciNet  MATH  Google Scholar 

  • Pignatiello J, Runger G (1990) Comparison of multivariate CUSUM charts. J Qual Technol 22(3):173–186

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (for complete samples). Biometrika 52(3–4):591–611

    Article  MathSciNet  MATH  Google Scholar 

  • Śliwa P, Schmid W (2005a) Monitoring the cross-covariances of a multivariate time series. Metrika 61(1):89–115

    Article  MathSciNet  MATH  Google Scholar 

  • Śliwa P, Schmid W (2005b) Surveillance of the covariance matrix of multivariate nonlinear time series. Statistics (Ber) 39(3):221–246

    Article  MathSciNet  MATH  Google Scholar 

  • Thomson GH (1951) The factorial analysis of human ability. London University Press, London

    Google Scholar 

  • Whittle P (1954) On stationary processes in the plane. Biometrika 41(3–4):434–449

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Garthoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garthoff, R., Otto, P. Verfahren zur Überwachung räumlicher autoregressiver Prozesse mit externen Regressoren. AStA Wirtsch Sozialstat Arch 12, 107–133 (2018). https://doi.org/10.1007/s11943-018-0224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11943-018-0224-1

Schlüsselwörter

Keywords

JEL-Klassifikation