Zusammenfassung
Der vorliegende Beitrag befasst sich mit der statistischen Prozesskontrolle räumlicher autoregressiver Prozesse mit externen Regressoren. Das Ziel ist die Weiterentwicklung etablierter Methoden der zeitlichen Prozesskontrolle. Diese Ansätze werden für Anwendungen in der räumlichen Prozesskontrolle modifiziert. Wir illustrieren dieses Vorgehen anhand eines sozialstatistischen Beispiels, welches sich mit der Bevölkerungsentwicklung in den Landkreisen und Kreisfreien Städten der Bundesrepublik Deutschland befasst. Mittels Faktorenanalyse werden zunächst nicht beobachtbare Variablen basierend auf den zuvor gewählten manifesten Variablen identifiziert, denn für die nachfolgende Analyse sind voneinander unabhängige Faktoren erforderlich. Daraufhin sind anhand einer Clusteranalyse die Regionen in Gruppen einzuteilen. Mit Hilfe der gebildeten Cluster sind diejenigen Regionen, welche die Grundlage der Modellanpassung darstellen, im Zustand unter Kontrolle auszuwählen. Anhand der zuvor ermittelten Faktorwerte erfolgt eine Modellanpassung mit Hilfe der verallgemeinerten Momenten-Methode. Im Rahmen der statistischen Prozesskontrolle werden in einem weiteren Schritt multivariate Kontrollkarten basierend auf entweder exponentieller Glättung oder kumulierter Summe herangezogen, um Kreise außerhalb der Region im Zustand unter Kontrolle hinsichtlich ihres Kontrollzustandes zu beurteilen. Wir stellen verschiedene Ansätze vor, um die zu überwachenden Regionen für eine Prozesskontrolle zu sortieren. Schlussendlich möchten wir zeigen, dass die modifizierten Kontrollkarten strukturelle Veränderungen in Bezug auf ein zuvor geschätztes Modell signalisieren, ohne dass eine permanente Schätzung erforderlich ist.
Abstract
This paper deals with statistical process control of spatial autoregressive models with exogenous regressors. The main purpose is the extension of conventional methods of process control in time series analysis. These approaches are modified for applications of spatial monitoring. The method is illustrated by an example of social statistics dealing with natural as well as spatial population change regarding administrative districts of Germany. Via factor analysis latent variables are identified based on manifest variables, because independent factors are needed for the following analysis. Afterwards, the considered regions are divided into groups via cluster analysis. The results of cluster analysis helps to find a specific region of one cluster that is used for in-control estimation. The previously mentioned model is fitted to factor scores using the generalized method of moments. Multivariate control charts based on either exponential smoothing or cumulative sum are used to evaluate full-sample data regarding their control situation. Accordingly, we propose different approaches to sort the regions to be monitored. Eventually, the modified charts signalize structural changes regarding the model based on in-control data without permanent re-estimation.









Literatur
Arthur D, Vassilvitskii S (2007) k-means++: the advantage of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, S 1027–1035
Bartlett MS (1937) The statistical conception of mental factors. Br J Psychol 28(1):97–104
Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc Series B Stat Methodol 36(2):192–225
Blommestein HJ (1983) Specification and estimation of spatial econometric models: a discussion of alternative strategies for spatial economic modelling. Reg Sci Urban Econ 13(2):251–270
Bodnar O, Schmid W (2007) Surveillance of the mean behavior of multivariate time series. Stat Neerl 61(4):383–406
Bundesministerium für Verkehr, Bau und Stadtentwicklung, Bundesamt für Bauwesen und Raumordnung (2008) Raumentwicklungspolitische Ansätze zur Förderung der Wissensgesellschaft. Werkstatt: Praxis 58
Cattell RB (1943a) The description of personality: foundations of trait measurement. Psychol Rev 50(6):559–594
Cattell RB (1943b) The description of personality: basic traits resolved into clusters. J Abnorm Soc Psychol 38(4):476–506
Cattell RB (1945) The description of personality: principles and findings in a factor analysis. Am J Psychol 58(1):69–90
Forgy E (1965) Cluster analysis of multivariate data: efficiency versus interpretability of classification. Biometrics 21(3):768–769
Garthoff R, Otto P (2017) Control charts for multivariate spatial autoregressive models. AStA Adv Stat Anal 101(1):67–94
Garthoff R, Okhrin I, Schmid W (2014) Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series. AStA Adv Stat Anal 98(3):225–255
Garthoff R, Okhrin I, Schmid W (2015) Control charts for multivariate nonlinear time series. Revstat Stat J 13(2):131–144
Hansen LP (1982) Large sample properties of generalized method of moments estimators. Econometrica 50(4):1029–1054
Heaton MJ, Christensen WF, Terres MA (2017) Nonstationary Gaussian process models using spatial hierarchical clustering from finite differences. Technometrics 59(1):93–101
Hotelling H (1947) Multivariate quality control: illustrated by the air testing of sample bombsights. In: Eisenhart C, Hastay M, Wallis M (Hrsg) Techniques of statistical analysis, S 111–184
Huang D, Anh VV (1992) Estimation of spatial ARMA models. Aust N Z J Stat 34(3):513–530
Huang JS (1984) The autoregressive moving average model for spatial analysis. Aust N Z J Stat 26(2):169–178
Jiang BC, Jiang SJ (1998) Machine vision based inspection of oil seals. J Manuf Syst 17(3):159–166
Jiang BC, Wang CC, Liu HC (2005) Liquid crystal display surface uniformity defect inspection using analysis of variance and exponentially weighted moving average techniques. Int J Prod Res 43(1):67–80
Jiang W, Han SW, Tsui KL, Woodall WH (2011) Spatiotemporal surveillance methods in the presence of spatial correlation. Stat Med 30(5):569–583
Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200
Kaiser HF (1959) Computer program for varimax rotation in factor analysis. Educ Psychol Meas 19(3):413–420
Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Finance Econ 17(1):99–121
Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev (Philadelphia) 40(2):509–533
Lee LF (2002) Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models. Econ Theory 18(2):252–277
Lee LF (2004) Asymptotic distributions of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925
Lee LF, Liu X (2010) Efficient GMM estimation of high order spatial autoregressive models with autoregressive disturbances. Econ Theory 26(1):187–230
Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137
Lowry C, Woodall WH, Champs C, Rigdon S (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34(1):46–53
MacQueen JB (1967) Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, S 281–297
Megahed FM, Woodall WH, Camelio JA (2011) A review and perspective on control charting with image data. J Qual Technol 43(2):83–98
Megahed FM, Wells LJ, Camelio JA, Woodall WH (2012) A spatiotemporal method for the monitoring of image data. Qual Reliab Eng Int 28(8):967–980
Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrica 37(1):17–23
Ord K (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 30(349):120–126
Otto P, Schmid W (2016) Detection of spatial change points in the mean and covariances of multivariate simultaneous autoregressive models. Biom J 58(5):1113–1137
Pignatiello J, Runger G (1990) Comparison of multivariate CUSUM charts. J Qual Technol 22(3):173–186
Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (for complete samples). Biometrika 52(3–4):591–611
Śliwa P, Schmid W (2005a) Monitoring the cross-covariances of a multivariate time series. Metrika 61(1):89–115
Śliwa P, Schmid W (2005b) Surveillance of the covariance matrix of multivariate nonlinear time series. Statistics (Ber) 39(3):221–246
Thomson GH (1951) The factorial analysis of human ability. London University Press, London
Whittle P (1954) On stationary processes in the plane. Biometrika 41(3–4):434–449
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garthoff, R., Otto, P. Verfahren zur Überwachung räumlicher autoregressiver Prozesse mit externen Regressoren. AStA Wirtsch Sozialstat Arch 12, 107–133 (2018). https://doi.org/10.1007/s11943-018-0224-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11943-018-0224-1
Schlüsselwörter
- Räumliche Prozesskontrolle
- Räumliche autoregressive Prozesse
- Faktorenanalyse
- Clusteranalyse
- Bevölkerungsentwicklung
Keywords
- Spatial process control
- Spatial autoregressive models
- Factor analysis
- Cluster analysis
- Demographic development