Abstract
We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and turning are described in a stochastic, phenomenological manner. In this way, neurons with realistic axonal and dendritic morphologies, including neurite curvature, can be generated. Synapses are formed as neurons grow out and axonal and dendritic branches come in close proximity of each other. NETMORPH is a flexible tool that can be applied to a wide variety of research questions regarding morphology and connectivity. Research applications include studying the complex relationship between neuronal morphology and global patterns of synaptic connectivity. Possible future developments of NETMORPH are discussed.














Similar content being viewed by others
References
Aeschlimann, M. (2000). Biophysical models of axonal pathfinding. Ph.D. thesis, University of Lausanne.
Ascoli, G., & Krichmar, J. (2000). L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.
Ascoli, G., Krichmar, J., Nasuto, S., & Senft, S. (2001a). Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society of London B, 356, 1131–1145.
Ascoli, G., Krichmar, J., Scorcioni, R., Nasuto, S., & Senft, S. (2001b). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.
Bamburg, J. (2003). Introduction to cytoskeletal dynamics and pathfinding of neuronal growth cones. Journal of Histochemistry & Cytochemistry, 51(4), 407–409.
Belmonte, M., & Bourgeron, T. (2006). Fragile x syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9, 1221–1225.
Braitenberg, V., & Schütz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.
Butz, M., Lehmann, K., Dammasch, I., & Teuchert-Noodt, G. (2006). A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Networks, 19, 1490–1505.
da Costa, L. F., Manoel, E., Faucereau, J., Chelly, J., Van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network, 13(3), 283–310.
Dityatev, A. E., Chmykhova, N. M., Studer, L., Karamian, O. A., Kozhanov, V. M., & Clamann, H. P. (1995). Comparison of the topology and growth rules of motoneuronal dendrites. J. Comp Neurol., 363, 505–516.
Douglas, R., & Martin, K. (2004). Neuronal circuits in the neocortex. Annual Review of Neuroscience, 27, 419–451.
Eberhard, J. P., Wanner, A., & Wittum, G. (2006). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing, 70(1–3), 327–342.
Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.
Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron, 54, 219–235.
Goldberg, D., & Burmeister, D. (1989). Looking into growth cones. Trends in Neurosciences, 12(12), 503–506.
Goodhill, J. G. (1998). Mathematical guidance for axons. Trends in Neurosciences, 21, 226–231.
Gordon-Weeks, P. R. (2000). Neuronal Growth Cones. Cambridge, United Kingdom: Cambridge University Press.
Graham, B., & Van Ooyen, A. (2004). Transport limited effects in a model of dendritic branching. Journal of Theoretical Biology, 230, 421–432.
Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern., 82, 111–121.
Hely, T., Graham, B., & Van Ooyen, A. (2001). A computational model of dendrite elongation and branching based on map2 phosphorylation. Journal of Theoretical Biology, 210, 375–384.
Hentschel, H. G. E., & Van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London Series B, 266, 2231–2238.
Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F. Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). Cambridge: MIT.
Hillman, D. E. (1988). Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In R. Lasek & M. Black (Eds.), Intrinsic determinants of neuronal form and function (pp. 83–113). New York: Alan R. Liss, Inc.
Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.
Hines, M., & Moore, J. (1993). A NEURON simulation program. In 23 rd Annual Meeting of the Society for Neuroscience.
Isbister, C., & O’Connor, T. (1999). Filopodial adhesion does not predict growth cone steering events in vivo. Journal of Neuroscience, 20, 2589–2600.
Jan, Y.-N., & Jan, L.-Y. (2003). The control of dendrite development. Neuron, 40, 229–242.
Kaiser, M., & Hilgetag, C. (2007). Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing, 70, 1829–1832.
Kater, S. B. & Guthrie, P. B. (1990). Neuronal growth cone as an integrator of complex environmental information. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. LV, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 35.
Kiddie, G., McLean, D., van Ooyen, A., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In J. van Pelt, M. Kamermans, C. Levelt, A. van Ooyen, G. Ramakers, and P. Roelfsema, (Eds.), Development, dynamics and pathology of neuronal networks: from molecules to functional circuits, Progress in Brain Research, 147, 67–80. Elsevier.
Koene, R., Postma, F., de Ridder, S., Hoedemaker, S., van Pelt, J., & van Ooyen A. (2009) NETMORPH Manual. http://www.neurodynamics.nl/.
Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.
Kowalski, R. J., & Williams, R. J. (1993). Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. Journal Biological Chemistry, 268, 9847–9855.
Lamoureux, P., Buxbaum, R. E., & Heidemann, S. R. (1998). Axonal outgrowth of cultured neurons is not limited by growth cone competition. Journal of Cell Science, 111, 3245–3252.
Larkman, A. U. (1991). Dendritic morphology of pyramidal neurons of the visual cortex of the rat I. Branching patterns. Journal of Comparative Neurology, 306, 307–319.
Larkman, A. U., Major, G., Stratford, K. J., & Jack, J. J. B. (1992). Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry. Journal of Comparative Neurology, 323, 137–152.
Le Bé, J.-V., Silberberg, G., Wang, Y., & Markram, H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral Cortex, 17, 2204–2213.
Letourneau, P., Kater, S., & Macagno, E. (eds). (1991). The Nerve Growth Cone. New York: Raven.
Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.
Maskery, S. M., Buettner, H. M., & Shinbrot, T. (2004). Growth Cone Pathfinding: a competition between deterministic and stochastic events. BMC Neuroscience, 5, 22.
Nowakowski, R. S., Hayes, N. L., & Egger, M. D. (1992). Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Research, 576, 152.
Peters, A. (1979). Thalamic input to the cerebral cortex. Trends in Neurosciences, 2, 1183–1185.
Polinsky, M., Balzovich, K., & Tosney, K. (2000). Identification of an invariant response: Stable contact with schwann cells induces veil extension in sensory growth cones. Journal of Neuroscience, 20, 1044–1055.
Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.
Ramakers, G. J. A., Winter, J., Hoogland, T., Lequin, M. B., Van Pelt, J., & Pool, C. W. (1998). Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Development Brain Research, 108, 205–216.
Samsonovich, A., & Ascoli, G. (2007). Computational models of dendritic morphology: From parsimonious description to biological insight. In M. Laubichler & G. Müller (Eds.), Modeling Biology, Structures, Behaviors, Evolution (pp. 91–113). Cambridge, Massachusetts: MIT.
Sánchez, C. J., Díaz-Nido, J., & Avila, J. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in Neurobiology, 61, 133–168.
Scheff, S. W., Prince, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. F. (2007). Synaptic alterations in CA1 mild Alzheimer’s disease and mild cognitive impairment. Neurology, 68, 1501–1508.
Schierwagen, A., & Grantyn, R. (1986). Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J Hirnforsch, 27, 611–623.
Schubert, D., Kötter, R., Luhmann, H. J., & Staiger, J. F. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex, 16(2), 223–36.
Segev, R., & Ben-Jacob, E. (2000). Generic modeling of chemotactic based self-wiring of neural networks. Neural Networks, 13(2), 185–199.
Senft, S., & Ascoli, G. (1999). Reconstruction of brain networks by algorithmic amplification of morphometry data. Lecture Notes in Computer Science, 1606, 25–33.
Shepherd, G. M., & Svoboda, K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. Journal of Neuroscience, 25(24), 5670–5679.
Sporns, O., Chialvo, D., Kaiser, M., & Hilgetag, C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.
Stepanyants, A., & Chklovskii, D. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28(7), 387–394.
Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.
Uylings, H., & Smit, G. (1975). Three dimensional branching structure of pyramidal cell dendrites. Brain Research, 87, 55–60.
Uylings, H. B. M., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation Neural System, 13, 397–414.
Uylings, H. B. M., Kuypers, K. & Veltman, W. A. M. (1978). Environmental influences on the neocortex in later life. In M. A. Corner (Ed.) Maturation of the nervous system. Progress in Brain Research, Vol 48, pp. 261–273. Elsevier, Amsterdam.
Uylings, H. B. M., Van Pelt, J., Parnavelas, J. G., & Ruiz-Marcos, A. (1994). Geometrical and topological characteristics in the dendritic development of cortical pyramidal and nonpyramidal neurons. In J. van Pelt, M. A. Corner, H. B. M. Uylings & F. H. Lopes da Silva (Eds.), Progress in Brain Research, Vol. 102, the self-organizing brain: from growth cones to functional networks (pp. 109–123). Amsterdam: Elsevier.
Van Ooyen, A., & Van Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.
Van Ooyen, A., & Van Pelt, J. (1996). Complex periodic behavior in a neural network model with activity-dependent neurite outgrowth. Journal of Theoretical Biology, 179, 229–242.
Van Ooyen, A., Van Pelt, J., & Corner, M. (1995). Implications of activity dependent neurite outgrowth for neuronal morphology and network development. Journal of Theoretical Biology, 172, 63–82.
Van Ooyen, A., Pakdaman, K., Houweling, A., Van Pelt, J., & Vibert, J.-F. (1996). Networks connectivity changes through activity-dependent neurite outgrowth. Neural Processing Letters, 3, 123–130.
Van Ooyen, A., Graham, B., & Ramakers, G. (2001). Competition for tubulin between growing neurites during development. Neurocomputing, 38–40, 73–78.
Van Pelt, J., & Uylings, H. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.
Van Pelt, J., & Uylings, H. (2002). Branching rates and growth functions in the outgrowth of dendritic branching patterns. Network: Computational Neural Systems, 13, 261–281.
Van Pelt, J., & Uylings, H. (2003). Growth functions in dendritic outgrowth. Brain and Mind, 4:51–65. In A. van Ooyen, (Ed.), Modeling Neural Development, 75–94. Cambridge, MA: MIT Press.
Van Pelt, J., & Uylings, H. B. M. (2005). Natural variability in the geometry of dendritic branching patterns. In: G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg, & O. Sporns (Eds.), Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. CRC Press, 2005, pp. 89–115.
Van Pelt J. and Uylings H.B.M. (2007) Modeling neuronal growth and shape. In Modeling Biology—Structures, Behaviors, Evolution, Manfred D. Laubichler and Gerd B. Müller (Eds). The MIT Press, 2007, Cambridge, pp. 195–215.
Van Pelt, J., Uylings, H. B. M., Verwer, R. W. H., Pentney, R. J., & Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology, 54, 759–784.
Van Pelt, J., Dityatev, A. E., & Uylings, H. B. M. (1997). Natural variability in the number of dendritic segments: Model-based inferences about branching during neurite outgrowth. Journal of Comparative Neurology, 387, 325–340.
Van Pelt, J., Van Ooyen, A., & Uylings, H. B. M. (2001a). Modeling dendritic geometry and the development of nerve connections. In: De Schutter E (Ed.), Cannon RC (CD-ROM) Computational Neuroscience: Realistic modeling for experimentalist, Chapter 7, CRC Press. pp 179–208.
Van Pelt, J., Van Ooyen, A., & Uylings, H. (2001b). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and Embryology, 204, 255–265.
Van Pelt, J., Schierwagen, A., & Uylings, H. B. M. (2001c). Modeling dendritic morphological complexity of deep layer cat superior colliculus neurons. Neurocomputing, 38–40, 403–408.
Van Pelt, J., Graham, B., & Uylings, H. (2003). Formation of dendritic branching patterns. In A. van Ooyen (Ed.), Modeling neural development (pp. 75–94). Cambridge, Massachusets: The MIT.
Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.
Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., & Markram, H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12(4), 395–410.
Zubler, F., & Douglas, R. (2008) CX3D: a java package for simulation of cortical development in 3D. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2008. doi:10.3389/conf.neuro.11.2008.01.127.
Acknowledgment
The development of the NETMORPH code by Dr. Randal Koene was supported by the Netherlands Organization for Scientific Research (Nederlandse Organisatie voor Wetenschappelijk Onderzoek) through the Program Computational Life Sciences grant CLS2003 (635.100.005) to Dr. Jaap van Pelt and Dr. Arjen van Ooyen, and by the EC Marie Curie Research and Training Network (RTN) NEURoVERS-it 019247. The validation of NETMORPH was additionally supported by the EU BIO-ICT Project SECO (grant 216593). The authors thank Nikos Green for contributing data sets of cultured neurons.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Koene, R.A., Tijms, B., van Hees, P. et al. NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies. Neuroinform 7, 195–210 (2009). https://doi.org/10.1007/s12021-009-9052-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-009-9052-3