Abstract
Associating fMRI image datasets with the available literature is crucial for the analysis and interpretation of fMRI data. Here, we present a human brain function mapping knowledge-base system (BrainKnowledge) that associates fMRI data analysis and literature search functions. BrainKnowledge not only contains indexed literature, but also provides the ability to compare experimental data with those derived from the literature. BrainKnowledge provides three major functions: (1) to search for brain activation models by selecting a particular brain function; (2) to query functions by brain structure; (3) to compare the fMRI data with data extracted from the literature. All these functions are based on our literature extraction and mining module developed earlier (Hsiao, Chen, Chen. Journal of Biomedical Informatics 42, 912–922, 2009), which automatically downloads and extracts information from a vast amount of fMRI literature and generates co-occurrence models and brain association patterns to illustrate the relevance of brain structures and functions. BrainKnowledge currently provides three co-occurrence models: (1) a structure-to-function co-occurrence model; (2) a function-to-structure co-occurrence model; and (3) a brain structure co-occurrence model. Each model has been generated from over 15,000 extracted Medline abstracts. In this study, we illustrate the capabilities of BrainKnowledge and provide an application example with the studies of affect. BrainKnowledge, which combines fMRI experimental results with Medline abstracts, may be of great assistance to scientists not only by freeing up resources and valuable time, but also by providing a powerful tool that collects and organizes over ten thousand abstracts into readily usable and relevant sources of information for researchers.












Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. Paper presented at the 20th Int. Conf. on Very Large Data Bases, 487–499, 1994.
Barinaga, M. (2003). Neuroimaging. Still debated, brain image archives are catching on. Science, 300, 43–45.
Botvinick, M., Jha, A. P., Bylsma, L. M., Fabian, S. A., Solomon, P. E., & Prkachin, K. M. (2005). Viewing facial expressions of pain engages cortical areas involved in the direct experience of pain. Neuroimage, 25, 312–319.
Bowden, D. M., & Dubach, M. F. (2003). NeuroNames 2002. Neuroinformatics, 1, 43–59.
Brett, M., Christoff, K., Cusack, R., & Lancaster, J. (2001). Using the Talairach atlas with the MNI template. Neuroimage, 13, 85.
Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical models from 305 MRI volumes. Paper presented at the IEEE Nucl. Sci. Symp. Med. Imaging Conf., 1813–1817, Piscataway, NJ, 1993.
Friston, K. J., Jezzard, P., & Turner, R. (1994). Analysis of functional MRI time-series. Human Brain Mapping, 1, 153–171.
Hsiao, M. Y., Huang, W. J., Chen, D. Y., & Chen, J. H. (2007). The human brain functional mapping knowledge base with 3D visualization. Presented at the 13th Annual Meeting of the Organization for Human Brain Mapping, June 10–14, 2007, Chicago, IL.
Hsiao, M. Y., Chen, C. C., & Chen, J. H. (2009). Using UMLS to construct a generalized hierarchical concept-based dictionary of brain functions for information extraction from the fMRI literature. Journal of Biomedical Informatics, 42, 912–922.
Jelier, R., Jenster, G., Dorssers, L. C., van der Eijk, C. C., van Mulligen, E. M., Mons, B., et al. (2005). Co-occurrence based meta-analysis of scientific texts: retrieving biological relationships between genes. Bioinformatics, 21, 2049–2058.
Jenssen, T. K., Laegreid, A., Komorowski, J., & Hovig, E. (2001). A literature network of human genes for high-throughput analysis of gene expression. Nature Genetics, 28, 21–28.
Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–78.
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10, 120–131.
Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28, 1194–1205.
Li, X., Cai, H., Xu, J., Ying, S., & Zhang, Y. (2010). A mouse protein interactome through combined literature mining with multiple sources of interaction evidence. Amino Acids, 38, 1237–1252.
Maihofner, C., Forster, C., Birklein, F., Neundorfer, B., & Handwerker, H. O. (2005). Brain processing during mechanical hyperalgesia in complex regional pain syndrome: a functional MRI study. Pain, 114, 93–103.
Muller, H., & Mancuso, F. (2008). Identification and analysis of co-occurrence networks with NetCutter. PLoS ONE, 3, e3178.
Nielsen, F. A. (2003). The Brede database: a small database for functional neuroimaging. NeuroImage, 19, Presented at the 9th International Conference on Functional Mapping of the Human Brain, e1788–e1789, June 19–22, 2003, New York.
Nielsen, F. A., Hansen, L. K., & Balslev, D. (2004). Mining for associations between text and brain activation in a functional neuroimaging database. Neuroinformatics, 2, 369–380.
Nielsen, F. A., Christensen, M. S., Madsen, K. H., Lund, T. E., & Hansen, L. K. (2006). fMRI neuroinformatics. IEEE Engineering in Medicine and Biology Magazine, 25, 112–119.
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 89, 5951–5955.
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage, 16, 331–348.
Pogatzki-Zahn, E. M., Wagner, C., Meinhardt-Renner, A., Burgmer, M., Beste, C., Zahn, P. K., et al. (2010). Coding of incisional pain in the brain: a functional magnetic resonance imaging study in human volunteers. Anesthesiology, 112, 406–417.
Portas, C., Goldstein, J., Shenton, M., Hokama, H., Wible, C., Fischer, I., et al. (1998). Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biological Psychiatry, 43, 649–659.
Raij, T. T., Numminen, J., Narvanen, S., Hiltunen, J., & Hari, R. (2009). Strength of prefrontal activation predicts intensity of suggestion-induced pain. Human Brain Mapping, 30, 2890–2897.
Ramani, A. K., Bunescu, R. C., Mooney, R. J., & Marcotte, E. M. (2005). Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 6, R40.
Rhodes, R. A., Murthy, N. V., Dresner, M. A., Selvaraj, S., Stavrakakis, N., Babar, S., et al. (2007). Human 5-HT transporter availability predicts amygdala reactivity in vivo. Journal of Neuroscience, 27, 9233–9237.
Sergerie, K., Chochol, C., & Armony, J. L. (2008). The role of the amygdala in emotional processing: a quantitative meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 32, 811–830.
Simpson, J. R., Ongur, D., Akbudak, E., Conturo, T. E., Ollinger, J. M., Snyder, A. Z., et al. (2000). The emotional modulation of cognitive processing: an fMRI study. Journal of Cognitive Neuroscience, 12(Suppl 2), 157–170.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219.
Stapley, B. J., & Benoit, G. (2000). Biobibliometrics: information retrieval and visualization from co-occurrences of gene names in Medline abstracts. Proceedings of the Pacific Symposium on Bio-computing, 529–540.
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical.
Van Horn, J. D., Grethe, J. S., Kostelec, P., Woodward, J. B., Aslam, J. A., Rus, D., et al. (2001). The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1323–1339.
Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18, 411–418.
Wilkowski, B., Szewczyk, M., Rasmussen, P. M., Hansen, L. K., & Nielsen, F. A. (2009a). Coordinate-based meta-analytic search for the SPM neuroimaging pipeline. Paper presented at the International Conference on Health Informatics, Portugal, 2009.
Wilkowski, B., Szewczyk, M., & Hansen, L. (2009b). Bridging the gap between coordinate-and keyword-based search of neuroscientific databases by UMLS-assisted semantic keyword extraction. Neuroimage 47, S165, Presented at the 15th Annual Meeting of the Organization for Human Brain Mapping, June 18–23, 2009, San Francisco.
Williams, L. M., Das, P., Liddell, B. J., Olivieri, G., Peduto, A. S., David, A. S., et al. (2007). Fronto-limbic and autonomic disjunctions to negative emotion distinguish schizophrenia subtypes. Psychiatry Research, 155, 29–44.
Wright, C. I., Martis, B., Shin, L. M., Fischer, H., & Rauch, S. L. (2002). Enhanced amygdala responses to emotional versus neutral schematic facial expressions. Neuroreport, 13, 785–790.
Yue, P., Melamud, E., & Moult, J. (2006). SNPs3D: candidate gene and SNP selection for association studies. BMC Bioinformatics, 7, 166.
Zhu, S., Okuno, Y., Tsujimoto, G., & Mamitsuka, H. (2007). Application of a new probabilistic model for mining implicit associated cancer genes from OMIM and medline. Cancer Informations, 2, 361–371.
Acknowledgements
We would like to thank Dr. Chung-Ming Chen, Dr. Der-Yow Chen, Dr. Hsin-Hsi Chen and Dr. Keng-Chen Liang for their helpful discussions in this work. This research was partially supported by grants from National Science Council (Taiwan) NSC97-2321-B-002-044 and NSC98-2627-B-002-014 to CCH and NSC97-2410-H-002-158-MY2 to CCC. The data reported in this paper was from the fMRI Data Center archive (www.fmridc.org, accession number 2-2000-1119F).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hsiao, MY., Chen, CC. & Chen, JH. BrainKnowledge: A Human Brain Function Mapping Knowledge-Base System. Neuroinform 9, 21–38 (2011). https://doi.org/10.1007/s12021-010-9083-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-010-9083-9