Skip to main content
Log in

Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback–Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The term “database” refers to the sets of 3D reconstructions of basal dendrites from each of the three cortical areas. The term “dataset” is used to refer to the values of the variables measured for each pair of sibling segments in those reconstructions.

References

  • Anwar, H., Riachi, I., Hill, S., Schürmann, F., & Markram, H. (2009). An approach to capturing neuron morphological diversity. In E. De Schutter (Ed.), Computational modeling methods for neuroscientists (pp. 211–232). The MIT Press.

  • Ascoli, G. A. (2007). Successes and rewards in sharing digital reconstructions of neuronal morphology. Neuroinformatics, 5, 154–160.

    Article  PubMed  Google Scholar 

  • Ascoli, G. A., & Krichmar, J. L. (2000). L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.

    Article  Google Scholar 

  • Ascoli, G. A., Krichmar, J. L., Nasuto, S., & Senft, S. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.

    Article  PubMed  CAS  Google Scholar 

  • Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). Neuromorpho.org: A central resource for neuronal morphologies. Journal of Neuroscience, 27(35), 9247–9251.

    Article  PubMed  CAS  Google Scholar 

  • Ascoli, G. A., Alonso-Nanclares, L., Anderson, S., Barrionuevo, G., Benavides-Piccione, R., Burkhalter, A., et al. (2008). Petilla terminology: Nomenclature of features of gabaergic interneurons of the cerebral cortex. Nature Reviews. Neuroscience, 9(7), 557–568.

    Article  PubMed  CAS  Google Scholar 

  • Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J., Changeux, J., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572.

    Article  Google Scholar 

  • Benavides-Piccione, R., Ballesteros-Yáñez, I., Martínez de Legrán, M., Elston, G., Estivill, X., Fillat, C., et al. (2004). On dendrites in Down syndrome and DS murine models: A spiny way to learn. Progress in Neurobiology, 74, 111–126.

    Article  PubMed  CAS  Google Scholar 

  • Benavides-Piccione, R., Hamzei-Sichani, F., Ballesteros-Yáñez, I., DeFelipe, J., & Yuste, R. (2006). Dendritic size of pyramidal neurons differs among mouse cortical regions. Cerebral Cortex, 16, 990–1001.

    Article  PubMed  Google Scholar 

  • Brown, K. M., Gillette, T. A., & Ascoli, G. A. (2008). Quantifying neuronal size: Summing up trees and splitting the branch difference. Seminars in Cell & Developmental Biology, 19, 485–493.

    Article  Google Scholar 

  • Cannon, R., Turner, D., Pyapali, G., & Wheal, H. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.

    Article  PubMed  CAS  Google Scholar 

  • Chen, J. Y. (2009). A simulation study investigating the impact of dendritic morphology and synaptic topology on neuronal firing patterns. Neural Computation, 22(4), 1086–1111.

    Article  Google Scholar 

  • Cline, H. (2001). Dendritic arbor development and synaptogenesis. Current Opinion in Neurobiology, 11(1), 118–126.

    Article  PubMed  CAS  Google Scholar 

  • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309–347.

    Google Scholar 

  • DeFelipe, J. (2008). The neuroanatomist’s dream, the problems and solutions, and the ultimate aim. Frontiers in Neuroscience,, 2, 10–12.

    Article  PubMed  Google Scholar 

  • DeFelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39, 563–607.

    Article  PubMed  CAS  Google Scholar 

  • Devaud J. M., Quenet, B., Gascuel, J., & Masson, C. (2000). Statistical analysis and parsimonious modelling of dendrograms of in vitro neurones. Bulletin of Mathematical Biology, 62, 657–674.

    Article  PubMed  CAS  Google Scholar 

  • Ding, B., Gentleman, R., & Carey, V. (2010). bioDist: Different distance measures. R package version 1.18.0.

  • Donohue, D. E., & Ascoli, G. A. (2005a). Local diameter fully constrains dendritic size in basal but not apical trees of CA1 pyramidal neurons. Journal of Computational Neuroscience, 19(2), 223–238.

    Article  PubMed  Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2005b). Models of neuronal outgrowth. In S. Koslow, & S. Subramaniam (Eds.), Databasing the brain: From data to knowledge (pp. 303–326). New York: Wiley.

    Google Scholar 

  • Donohue, D. E., & Ascoli, G. A. (2008). A comparative computer simulation of dendritic morphology. PLoS Computational Biology, 4(6). doi:10.1371/journal.pcbi.1000089.

  • Efron, B., & Tibshirani, R. (1986). Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science, 1(1), 54–75.

    Article  Google Scholar 

  • Elston, G. (2007). Specializations in pyramidal cell structure during primate evolution. In J. Kaas, & T. Preuss (Eds.), Evolution of nervous systems (pp. 191–242). Academic: Oxford.

    Chapter  Google Scholar 

  • Elston, G., & Rosa, M. (1997). The occipito-parietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452.

    Article  PubMed  CAS  Google Scholar 

  • Fay, M. P., & Proschan, M. A. (2010). Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Statistics Surveys, 4, 1–39.

    Article  PubMed  Google Scholar 

  • Feldman, M. (1984). Morphology of the neocortical pyramidal neuron. In A. Peters, & E. Jones (Eds.), Cerebral cortex. Cellular components of the cerebral cortex (Vol. 1, pp. 201–253). New York: Plenum Press.

    Google Scholar 

  • Friedman, N., & Yakhini, Z. (1996). On the sample complexity of learning Bayesian networks. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (UAI 96) (pp. 274–282).

  • Friedman, N., Goldszmith, M., & Wyner, A. (1999). Data analysis with Bayesian networks: A bootstrap approach. In Proceedings of the fifteenth conference on uncertainty in artificial intelligence (UAI 99) (pp. 196–205).

  • Geiger, D., & Heckerman, D. (1996). Knowledge representation and inference in similarity networks and Bayesian multinets. Artificial Intelligence, 82, 45–74.

    Article  Google Scholar 

  • Glaser, J., & Glaser, E. (1990). Neuron imaging with neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton, P. (1993). A language to describe the growth of neurites. Biological Cybernetics, 68(6), 559–565.

    Article  PubMed  CAS  Google Scholar 

  • Häusser, M., & Mel, B. (2003). Dendrites: Bug or feature? Current Opinion in Neurobiology, 13(3), 372–383.

    Article  PubMed  Google Scholar 

  • Heckerman, D. (1996). A tutorial on learning with Bayesian networks. Tech. Rep. MSR-TR-95-06, Microsoft Corporation.

  • Hentschel, H. G., & van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London. Series B, Biological Sciences, 266, 2231–2238.

    Article  CAS  Google Scholar 

  • Heumann, H., & Wittum, G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics, 7(3), 179–190.

    Article  PubMed  Google Scholar 

  • Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). MIT Press.

  • Jacobs, B., & Scheibel, A. (2002). Regional dendritic variation in primate cortical pyramidal cells. In A. Schüz, & R. Miller (Eds.), Cortical areas: Unity and diversity (pp. 111–131). CRC Press.

  • Kaufmann, W. E., & Moser, H. W. (2000). Dendritic anomalies in disorders associated with mental retardation. Cerebral Cortex, 10(10), 981–991.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., & Segev, I. (2000). The role of single neurons in information processing. Nature Neuroscience, 3, 1171–1177.

    Article  PubMed  CAS  Google Scholar 

  • Koch, C., Poggio, T., & Torres, V. (1982). Retinal ganglion cells: A functional interpretation of dendritic morphology. Proceedings of the Royal Society of London. Series B, Biological Sciences, 298(1090), 227–263.

    CAS  Google Scholar 

  • Koene, R. A., Tijms, B., van Hees, P., Postma, F., de Ridder, A., Ramakers, G. J., et al. (2009). Netmorph: A framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics, 7(3), 195–210.

    Article  PubMed  Google Scholar 

  • Koller, D., & Friedman, N. (2009). Probabilistic graphical models. Principles and techniques. The MIT Press.

  • Krause, P. J. (1998). Learning probabilistic networks. Knowledge Engineering Review, 13(4), 321–351.

    Article  Google Scholar 

  • Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.

    Article  Google Scholar 

  • Larkman, A. (1991). Dendritic morphology of pyramidal neurones of the visual cortex of the rat: I. Branching patterns. Journal of Comparative Neurology, 306(2), 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Leray, P., & Francois, O. (2006). BNT structure learning package: Documentation and experiments. Tech. Rep. FRE CNRS 2645, Laboratoire PSI—INSA Rouen.

  • Li, G. H., & Qin, C. D. (1996). A model for neurite growth and neuronal morphogenesis. Mathematical Biosciences, 132(1), 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay, K. A., Maxwell, D. J., Rosenberg, J. R., & Tucker, G. (2007). A new approach to reconstruction models of dendritic branching patterns. Mathematical Biosciences, 205(2), 271–296.

    Article  PubMed  Google Scholar 

  • Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157(1), 132–141.

    Article  PubMed  Google Scholar 

  • Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Markram, H. (2006). The blue brain project. Nature Reviews. Neuroscience, 7(2), 153–160.

    Article  PubMed  CAS  Google Scholar 

  • McAllister, A. K. (2000). Cellular and molecular mechanisms of dendrite growth. Cerebral Cortex, 10(10), 963–973.

    Article  PubMed  CAS  Google Scholar 

  • Miina, J., & Pukkala, T. (2002). Application of ecological field theory in distance-dependent growth modelling. Forest Ecology and Management, 161, 101–107.

    Article  Google Scholar 

  • Murphy, K. (2001). The Bayes net toolbox for Matlab. In E. Wegman, A. Braverman, A. Goodman, & P Smyth (Eds.), Computing science and statistics. Proceedings of the 33rd symposium on the interface (Vol. 33, pp. 331–350).

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems. Morgan Kaufmann.

  • Pourret, O., Naïm, P., & Marcot, B. (2008). Bayesian networks: A practical guide to applications. Wiley.

  • R Development Core Team (2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Robert, M. E., & Sweeney, J. D. (1997). Computer model: Investigating the role of filopodia-based steering in experimental neurite galvanotropism. Journal of Theoretical Biology, 188(3), 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Romero, V., Rumí, R., & Salmerón, A. (2006). Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning, 42, 54–68.

    Article  Google Scholar 

  • Rozenberg, G., & Salomaa, A. (1980). The mathematical theory of L-systems. New York: Academic Press.

    Google Scholar 

  • Samsonovich, A. V., & Ascoli, G. A. (2003). Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell. Journal of Neuroscience Research, 71(2), 173–187.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Scott, E. K., & Luo, L. (2001). How do dendrites take their shape? Nature Neuroscience, 4(4), 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd, G. M. (ed) (2004). The synaptic organization of the brain (5th edn). Oxford University Press.

  • Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews. Neuroscience, 9(3), 206–221.

    Article  PubMed  CAS  Google Scholar 

  • Steuber, V., De Schutter, E., & Jaeger, D. (2004). Passive models of neurons in the deep cerebellar nuclei: The effect of reconstruction errors. Neurocomputing, 58–60, 563–568.

    Article  Google Scholar 

  • Sumida, A., Terazawa, I., Togashi, A., & Komiyama, A. (2002). Spatial arrangement of branches in relation to slope and neighbourhood competition. Annals of Botany, 82, 301–310.

    Article  Google Scholar 

  • Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2006). Shaping realistic neuronal morphologies: An evolutionary computation method. In International joint conference on neural networks (IJCNN2006) (pp. 573–580). Vancouver, Canada.

  • Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2007). On the neuronal morphology-function relationship: A synthetic approach. In Knowledge discovery and emergent complexity in bioinformatics, LNBI. (Vol. 4366, pp. 135–149). Springer.

  • Torben-Nielsen, B., Tuyls, K., & Postma, E. O. (2008a). Evol-neuron: Neuronal morphology generation. Neurocomputing, 71, 963–972.

    Article  Google Scholar 

  • Torben-Nielsen, B., Vanderlooy, S., & Postma, E. O. (2008b). Non-parametric algorithmic generation of neuronal morphologies. Neuroinformatics, 6, 257–277.

    Article  PubMed  Google Scholar 

  • Uylings, H. B., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation in Neural Systems, 13, 397–414.

    Article  Google Scholar 

  • Uylings, H. B., Ruiz-Marcos, A., & Van Pelt, J. (1986). The metric analysis of three-dimensional dendritic tree patterns: A methodological review. Journal of Neuroscience Methods, 18, 127–151.

    Article  PubMed  CAS  Google Scholar 

  • Van Pelt, J., & Uylings, H. B. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.

    Google Scholar 

  • Van Pelt, J., & Uylings, H. B. (2005). Natural variability in the geometry of dendritic branching patterns. In G. Reeke, R. Poznanski, K. Lindsay, J. Rosenberg, & O. Sporns (Eds.), Modeling in the neurosciences: From biological systems to neuromimetic robotics (pp. 89–116). CRC Press.

  • Van Pelt, J., van Ooyen, A., & Uylings, H. B. (2001). Modeling dendritic geometry and the development of nerve connections. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 179–208). CRC Press.

  • Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.

    Article  PubMed  Google Scholar 

  • Verwer, R., van Pelt, J., & Uylings, H. B. (1992). An introduction to topological analysis of neurones. In M Stewart (Ed.), Quantitative methods in neuroanatomy (pp. 292–323). John Wiley and Sons.

  • Vetter, P., Roth, A., & Häusser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85(2), 926–937.

    PubMed  CAS  Google Scholar 

  • Wang, Q., Kulkarni, S. R., & Verdú, S. (2006). A nearest-neighbor approach to estimating divergence between continuous random vectors. In IEEE international symposium on information theory (ISIT 2006) (pp. 242–246).

  • Wen, Q., Stepanyants, A., Elston, G., Grosberg, A., & Chklovskii, D. (2009). Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12,536–12,541.

    Article  CAS  Google Scholar 

  • White, E. (1989). Cortical circuits: Synaptic organization of the cerebral cortex. structure, function and theory. Boston: Birkhauser.

    Google Scholar 

  • Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83.

    Article  Google Scholar 

  • Yuste, R., & Bonhoeffer, T. (2004). Genesis of dendritic spines: Insights from ultrastructural and imaging studies. Nature Reviews. Neuroscience, 5, 24–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Spanish Science and Innovation Ministry, Cajal Blue Brain Project (C080020-09), TIN2010-20900-C04-04 Project and Consolider Ingenio 2010-CSD2007-00018. PL-C is supported by a FPU Fellowship from the Spanish Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. López-Cruz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Cruz, P.L., Bielza, C., Larrañaga, P. et al. Models and Simulation of 3D Neuronal Dendritic Trees Using Bayesian Networks. Neuroinform 9, 347–369 (2011). https://doi.org/10.1007/s12021-011-9103-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9103-4

Keywords

Navigation