Skip to main content

Advertisement

Log in

Principal Curves as Skeletons of Tubular Objects

Locally Characterizing the Structures of Axons

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Developments in image acquisition technology make high volumes of neuron images available to neuroscientists for analysis. However, manual processing of these images is not practical and is infeasible for larger and larger scale studies. Reliable interpretation and analysis of high volume data requires accurate quantitative measures. This requires analysis algorithms to use mathematical models that inherit the underlying geometry of biological structures in order to extract topological information. In this paper, we first introduce principal curves as a model for the underlying skeleton of axons and branches, then describe a recursive principal curve tracing (RPCT) method to extract this topology information from 3D microscopy imagery. RPCT first finds samples on the one dimensional principal set of the intensity function in space. Then, given an initial direction and location, the algorithm iteratively traces the principal curve in space using our principal curve tracing (PCT) method. Recursive implementation of PCT provides a compact solution for extracting complex tubular structures that exhibit bifurcations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. KDE is used as an example since it encompasses parametric mixture models as a special case; the method is general for any pdf model.

  2. Assuming Gaussian kernels here for illustration.

References

  • Al-Kofahi, K., Can, A., et al. (2004). Median-based robust algorithms for tracing neurons from noisy confocal microscope images. IEEE Transactions on Information Technology in Biomedicine, 7(4), 302–317.

    Article  Google Scholar 

  • Aykac, D., Hoffman, E., et al. (2003). Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Transactions on Medical Imaging, 22(8), 940–950.

    Article  PubMed  Google Scholar 

  • Bas, E., & Erdogmus, D. (2010a). Piecewise linear cylinder models for 3-dimensional axon segmentation. In 4th IEEE international symposium on biomedical imaging: From nano to macro.

  • Bas, E., & Erdogmus, D. (2010b). Principal curve tracing. In European symposium on artificial neural networks.

  • Bear, M., Connors, B., & Paradiso, M. (2007). Neuroscience: Exploring the brain. Philadelphia: Lippincott Williams Wilkins.

    Google Scholar 

  • Brown, K., Barrionuevo, G., Canty, A., De Paola, V., Hirsch, J., Jefferis, G., et al. (2011). The diadem data sets: Representative light microscopy images of neuronal morphology to advance automation of digital reconstructions. Neuroinformatics, 1–15. doi:10.1007/s12021-010-9095-5.

    Google Scholar 

  • Cai, H., Xu, X., et al. (2006). Repulsive force based snake model to segment and track neuronal axons in 3d microscopy image stacks. Neuroimage, 32, 1608–1620.

    Article  PubMed  Google Scholar 

  • Cai, H., Xu, X., et al. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3d optical microscopy images. Medical Image Analysis, 12, 666–675.

    Article  PubMed  Google Scholar 

  • Carreira-Perpinán, M., & Zemel, R. (2005). Proximity graphs for clustering and manifold learning. Advances in Neural Information Processing Systems, 17, 225–232.

    Google Scholar 

  • Cetingul, H., Plank, G., et al. (2009). Stochastic tractography in 3-D images via nonlinear filtering and spherical clustering. In MICCAI workshop on probabilistic models for medical, PMMIA (pp. 268–279).

  • Chang, K., & Ghosh, J. (2002). A unified model for probabilistic principal surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(1), 22–41.

    Article  Google Scholar 

  • Chen, J., Sato, Y., et al. (2002). Orientation space filtering for multiple orientation line segmentation. IEEE Transactions in Pattern Analysis and Machine Intelligence, 22(5), 417–429.

    Article  Google Scholar 

  • Cormen, T., Leiserson, C., et al. (2001). Introduction to algorithms. The algorithms of Kruskal and Prim. MIT Press and McGraw-Hill.

  • Deschamps, T., & Cohen, L. (2001). Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis, 5(4), 281–299.

    Article  PubMed  CAS  Google Scholar 

  • Einbeck, J., Tutz, G., et al. (2005). Local principal curves. Statistics and Computing, 15(4), 301–313.

    Article  Google Scholar 

  • Erdogmus, D., & Ozertem, U. (2007). Self-consistent locally defined principal surfaces. In Proceedings of the IEEE international conference on acoustics, speech and signal processing (Vol. 2, pp. 549–552).

  • Frangi, A., Niessen, W., et al. (1999). Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 18(10), 946–956.

    Article  PubMed  CAS  Google Scholar 

  • Hastie, T., & Stuetzle, W. (2003). Principal curves. Journal of the American Statistical Association, 84(406), 502–516.

    Article  Google Scholar 

  • Huang, S., Li, J., et al. (2009). Learning brain connectivity of Alzheimer’s disease from neuroimaging data. Advances in Neural Information Processing Systems, 22, 808–816.

    Google Scholar 

  • Jurrus, E., Hardy, M., et al. (2009). Axon tracking in serial block-face scanning electron microscopy. Medical Image Analysis, 13(1), 180–188.

    Article  PubMed  Google Scholar 

  • Kegl, B., Krzyzak, A., et al. (2000). Learning and design of principal curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(3), 281–297.

    Article  Google Scholar 

  • Krishnan, A., Asher, I., Davis, D., Okunieff, P., & O’Dell, W. (2008). Evidence that MR diffusion tensor imaging (tractography) predicts the natural history of regional progression in patients irradiated conformally for primary brain tumors. International Journal of Radiation Oncology, Biology, Physics, 71(5), 1553–1562.

    Article  PubMed  Google Scholar 

  • Livet, J., Weissman, T., Kang, H., Lu, J., Bennis, R., Sanes, J., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.

    Article  PubMed  CAS  Google Scholar 

  • Meinicke, P., Klanke, S., et al. (2005). Principal surfaces from unsupervised kernel regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(9), 1379–1391.

    Article  PubMed  Google Scholar 

  • Palágyi, K., & Kuba, A. (1998). A 3d 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters, 19(7), 613–627.

    Article  Google Scholar 

  • Rodriguez, A., Ehlenberger, D., et al. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.

    Article  PubMed  Google Scholar 

  • Schmitt, S., Scholz, M., et al. (2004). New methods for the computer-assisted 3d reconstruction of neurons. NeuroImage, 23(4), 1283–1298.

    Article  PubMed  Google Scholar 

  • Sheikh, Y., Khan, E., et al. (2007). Mode-seeking by medoidshifts. In Proceedings of the IEEE international conference on computer vision (Vol. 141, pp. 1–8). Citeseer.

    Google Scholar 

  • Sugihara, I. (2011). Bright field neuronal preparation optimized for automatic computerized reconstruction, a case with cerebellar climbing fibers. Neuroinformatics. doi:10.1007/s12021-011-9098-x.

  • Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178(1), 197–204.

    Article  PubMed  Google Scholar 

  • Wang, J., Zhou, X., et al. (2007). Dynamic local tracing for 3d axon curvilinear structure detection from microscopic image stack. In 4th IEEE international symposium on biomedical imaging: From nano to macro (pp. 81–84).

  • Wink, O., Niessen, W., et al. (2004). Multiscale vessel tracking. IEEE Transactions on Medical Imaging, 23(1), 130–133.

    Article  PubMed  Google Scholar 

  • Zhou, W., Li, H., et al. (2008). 3d dendrite reconstruction and spine identification. In Proceedings of MICCAI’08, part II (pp. 18–26).

Download references

Acknowledgements

The authors would like to thank the organizers and data providers of the Diadem Challenge for putting together this challenge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Bas.

Additional information

This work was partially supported by NSF grants ECCS0929576, ECCS0934506, IIS0934509, and IIS0914808.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bas, E., Erdogmus, D. Principal Curves as Skeletons of Tubular Objects. Neuroinform 9, 181–191 (2011). https://doi.org/10.1007/s12021-011-9105-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-011-9105-2

Keywords

Navigation