Skip to main content

Advertisement

Log in

Information-Theoretic Approach for Automated White Matter Fiber Tracts Reconstruction

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Fiber tracking is the most popular technique for creating white matter connectivity maps from diffusion tensor imaging (DTI). This approach requires a seeding process which is challenging because it is not clear how and where the seeds have to be placed. On the other hand, to enhance the interpretation of fiber maps, segmentation and clustering techniques are applied to organize fibers into anatomical structures. In this paper, we propose a new approach to automatically obtain bundles of fibers grouped into anatomical regions. This method applies an information-theoretic split-and-merge algorithm that considers fractional anisotropy and fiber orientation information to automatically segment white matter into volumes of interest (VOIs) of similar FA and eigenvector orientation. For each VOI, a number of planes and seeds is automatically placed in order to create the fiber bundles. The proposed approach avoids the need for the user to define seeding or selection regions. The whole process requires less than a minute and minimal user interaction. The agreement between the automated and manual approaches has been measured for 10 tracts in a DTI brain atlas and found to be almost perfect (kappa > 0.8) and substantial (kappa > 0.6). This method has also been evaluated on real DTI data considering 5 tracts. Agreement was substantial (kappa > 0.6) in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alexander, A. L., Hasan, K. M., Kindlmann, G. L., Parker, D. L., & Tsuruda, J. S. (2000). A geometric analysis of diffusion tensor measurements of the human brain. Magnetic Resonance in Medicine, 44(2), 283–291.

    Article  PubMed  CAS  Google Scholar 

  • Ashburner, J. (2007). SPM5 manual. Functional Imaging Laboratory, Wellcome Trust Centre for Neuroimaging.

  • Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632.

    Article  PubMed  CAS  Google Scholar 

  • Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance Series B, 111(3), 209–219.

    Article  PubMed  CAS  Google Scholar 

  • Bernal, B., & Altman, N. (2010). The connectivity of the superior longitudinal fasciculus: A tractography DTI study. Magnetic Resonance Imaging, 28(2), 217–25.

    Article  PubMed  Google Scholar 

  • Brun, A., Björnemo, M., Kikinis, R., & Westin, C. F. (2004). Clustering fiber tracts using normalized cuts. In International conference on medical image computing and computer-assisted intervention (MICCAI’04). Lecture notes in computer science (pp. 368–375). Saint Malo: Rennes.

    Google Scholar 

  • Cardenes, R., Munoz-Moreno, E., Sarabia-Herrero, R., Rodriguez-Velasco, M., Fuertes-Alija, J. J., & Martin-Fernandez, M. (2010). Analysis of the pyramidal tract in tumor patients using diffusion tensor imaging. NeuroImage, 50(1), 27–39.

    Article  PubMed  Google Scholar 

  • Catani, M., Howard, R. J., Pajevic, S., & Jones, D. K. (2002). Virtual in vivo interactive dissection of white matter fasciculi in the human brain. NeuroImage, 17, 77–79.

    Article  PubMed  Google Scholar 

  • Cohen-Adad, J., Benali, H., Hoge, R. D., & Rossignol, S. (2008). In vivo DTI of the healthy and injured cat spinal cord at high spatial and angular resolution. NeuroImage, 40(2), 685–97

    Article  PubMed  CAS  Google Scholar 

  • Conturo, T. E., Lori, N. F., Cull, T. S., Akbudak, E., Snyder, A. Z., Shimony, J. S., et al. (1999). Tracking neuronal fiber pathways in the living human brain. Magnetic Resonance in Medicine, 35, 399–412.

    Article  Google Scholar 

  • Corouge, I., Gouttard, S., & Gerig, G. (2004). Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In IEEE 2004 international symposium on biomedical imaging (ISBI 2004) (pp. 344–347).

  • Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Book  Google Scholar 

  • Gillard, J., Waldman, A., & Baker, P. (2005). Clinical MR neuroimaging: Diffusion, perfusion and spectroscopy. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hahn, K., Prigarin, S., & Pütz, B. (2001). Edge preserving regularization and tracking for diffusion tensor imaging. In International conference on medical image computing and computer assisted intervention (MICCAI’01) (pp. 195–203). Lecture notes in computer science 2208

  • Hahn, K., Prigarin, S., & Pütz, B. (2003). Spatial smoothing for diffusion tensor imaging with low signal to noise ratios. Discussion Paper 358, SFB 386, 2003, Ludwig-Maximilians-Universität München.

  • Holodny, A., Gor, D. M., Watts, R., Gutin, P. H., & Ulu, A. M. (2005). Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: Initial anatomic results in contradistinction to prior reports. Radiology, 234(3), 649–653.

    Article  PubMed  Google Scholar 

  • Jianu, R., Demiralp, C., & Laidlaw, D. H. (2009). Exploring 3D DTI fiber tracts with linked 2D representations. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1449–1456.

    Article  PubMed  Google Scholar 

  • Johansen-Berg, H., & Behrens, T. E. J. (2009). Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. Academic Press.

  • Jonasson, L., Hagmann, P., Thiran, J. P., & Wedeen, V. J. (2005). Fiber tracts of high angular resolution diffusion MRI are easily segmented with spectral clustering. International Society for Magnetic Resonance in Medicine, 24(9), 1127–1137.

    Google Scholar 

  • Jones, D. K., & Cercignani, M. (2010). Twenty-five pitfalls in the analysis of diffusion MRI data. NMR in Biomedicine, 23(7), 803–820.

    Article  PubMed  Google Scholar 

  • Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Lazar, M., Weinstein, D. M., Tsuruda, J. S., Hasan, K. M., Arfanakis, K., Meyerand, M. E., et al. (2003). White matter tractography using diffusion tensor deflection. Human Brain Mapping, 18(4), 306–321.

    Article  PubMed  Google Scholar 

  • Le Bihan, D., Mangin, J. F., Poupon, C., Clark, C. A., Pappata, S., Molko, N., & Chabriat, H. (2001) Diffusion tensor imaging: Concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.

    Article  PubMed  CAS  Google Scholar 

  • Li, H., Xue, Z., Guo, L., Liu, T., Hunter, J., & Wong, S. T. C. (2010). A hybrid approach to automatic clustering of white matter fibers. NeuroImage, 49(2), 1249–1258.

    Article  PubMed  Google Scholar 

  • Maddah, M., Mewes, A., Haker, S., Grimson, W. E. L., & Warfield, S. (2005). Automated atlas-based clustering of white matter fiber tracts from DTMRI. In International conference on medical image computing and computer assisted intervention, (MICCAI’05), Lecture notes in computer science (p. 188).

  • Masutani, Y., Aoki, S., Abe, O., & Ohtomo, K. (2006). Model-based tractography based on statistical atlas of MR-DTI. In 3rd IEEE international symposium on biomedical imaging: Macro to nano (pp. 89–92).

  • Mori, S., Wakana, S., Nagae-Poetscher, L. M., & Zijl, P. C. M. V. (2004). MRI atlas of human white matter. Amsterdam: Elsiever.

    Google Scholar 

  • Mori, S., & Zijl, P. C. M. V. (2002). Fiber tracking: Principles and strategies—A technical review. NMR in Biomedicine, 15(7–8), 468–480.

    Article  PubMed  Google Scholar 

  • Nöth, U., Meadows, G. E., Kotajima, F., Deichmann, R., Corfield, D. R., & Turner, R. (2006). Cerebral vascular response to hypercapnia: Determination with perfusion MRI at 1.5 and 3.0 Tesla using a pulsed arterial spin labeling technique. Journal of Magnetic Resonance Imaging: JMRI, 24(6), 1229–1235.

    Article  PubMed  Google Scholar 

  • Nucifora, P. G. P., Verma, R., Lee, S.-k., & Melhem, E. R. (2007). Diffusion-tensor MR imaging and tractography: Exploring brain microstructure and connectivity. Radiology, 245(2), 367–384.

    Article  PubMed  Google Scholar 

  • O’Donnell, L. J. (2006). Cerebral white matter analysis using diffusion imaging. Ph.D. thesis, MIT.

  • O’Donnell, L. J., & Westin, C. F. (2007). Automatic tractography segmentation using a highdimensional white matter atlas. IEEE Transactions on Medical Imaging, 11(26), 1562–1575.

    Article  Google Scholar 

  • O’Donnell, L. J., Westin, C. F., & Golby, A. J. (2009). Tract-based morphometry for white matter group analysis. Neuroimage, 3(45), 832–844.

    Article  Google Scholar 

  • Partridge, S. C., Mukherjee, P., Henry, R. G., Miller, S. P., Berman, J. I., Jin, H., et al. (2004). Diffusion tensor imaging: Serial quantification of white matter tract maturity in premature newborns. NeuroImage, 22(3), 1302–1314.

    Article  PubMed  Google Scholar 

  • Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion. Magnetic Resonance in Medicine, 36(6), 893–906.

    Article  PubMed  CAS  Google Scholar 

  • Prados, F., Boada, I., Feixas, M., Prats-Galino, A., Blasco, G., Pedraza, S., et al. (2007). DTIWeb: A web-based framework for DTI data visualization and processing. Lecture Notes in Computer Science, 4706/2007, 727–740.

    Article  Google Scholar 

  • Prados, F., Boada, I., Prats-Galino, A., Martín-Fernández, J. A., Feixas, M., Blasco, G., et al. (2010). Analysis of new diffusion tensor imaging anisotropy measures in the three-phase plot. Journal of Magnetic Resonance Imaging, 31(6), 1435–1444.

    Article  PubMed  Google Scholar 

  • Rigau, J., Feixas, M., & Sbert, M. (2004). An information theoretic framework for image segmentation. In IEEE international conference on image processing (pp. 1193–1196).

  • Rollins, N. K. (2007). Clinical applications of diffusion tensor imaging and tractography in children. Pediatric Radiology, 37(8), 769–780.

    Article  PubMed  Google Scholar 

  • Template Graphics Software Inc. (2002). Amira 3.1. Mercury Computer Systems.

  • Ulug, A. M., & van Zijl, P. C. (1999). Orientation-independent diffusion imaging without tensor diagonalization: Anisotropy definitions based on physical attributes of the diffusion ellipsoid. Magnetic Resonance Imaging, 9(6), 804–813.

    Article  CAS  Google Scholar 

  • Wakana, S., Jiang, H., Nagae-Poetscher, L. M., Zijl, P. C. M. V., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 1(230), 77–87.

    Article  Google Scholar 

  • Westin, C. F., Maier, S. E., Mamata, H., Nabavi, A., Jolesz, F. A., & Kikinis, R. (2002). Processing and visualization of diffusion tensor MRI. Medical Image Analysis, 6(2), 93–108.

    Article  PubMed  Google Scholar 

  • Westin, C. F., Peled, S., Gudbjartsson, H., Kikinis, R., & Jolesz, F. A. (1997). Geometrical diffusion measures for MRI from tensor basis analysis. In ISMRM ’97 (p. 1742). Vancouver, Canada.

  • Xia, Y., Turken, U., Whitfield-Gabrieli, S. L., & Gabrieli, J. D. (2005). Knowledge-based classification of neuronal fibers in entire brain. In International conference on medical image computing and computer assisted intervention (MICCAI’05) (pp. 205–212).

  • Xu, D., Mori, S., Solaiyappan, M., van Zijl, P. C. M., & Davatzikos, C. (2002). A framework for callosal fiber distribution analysis. NeuroImage, 17, 1131–1143.

    Article  PubMed  Google Scholar 

  • Zhang, S., & Laidlaw, D. H. (2002). Hierarchical clustering of streamtubes. Technical Report CS-02-18, Brown University Computer Science Department.

  • Zhang, W., Olivi, A., Hertig, S. J., van Zijl, P., & Mori, S. (2008). Automated fiber tracking of human brain white matter using diffusion tensor imaging. NeuroImage, 42(2), 771–777.

    Article  PubMed  Google Scholar 

  • Zhang, Y., Zhang, J., Oishi, K., Faria, A. V., Jiang, H., Li, X., et al. (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 52(4), 1289–1301.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by TIN2010-21089-C03-01 and 2009 SGR 643 and FIS PS09/00596 of I+D+I 2009-2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferran Prados.

Appendix: 2D Image Partitioning Algorithm

Appendix: 2D Image Partitioning Algorithm

Rigau et al. (2004) proposed an information-theoretic partitioning algorithm. In this algorithm, the partitioning of a 2D image is guided by the maximization of mutual information gain and is constructed from an information channel XY between the random variables X (input) and Y (output), which represent, respectively, the set of regions \(\mathcal{X}\) of an image and the set of intensity bins \(\mathcal{Y}\). The basic notions of information theory can be found in Cover and Thomas’s book (Cover and Thomas 1991).

To describe the method, first, we define the information channel and, then, we review the partitioning algorithm. The channel XY is defined by a conditional probability matrix p(Y|X) which expresses how the pixels corresponding to each region of the image are distributed into the histogram bins. Note that the capital letters X and Y as arguments of p() are used to denote probability distributions. For instance, while p(X) represents the input distribution of the regions, p(x) denotes the probability of a single region x.

Given an image with N pixels, the three basic elements of the channel XY are:

  • The conditional probability matrix p(Y|X), which represents the transition probabilities from each region of the image to the bins of the histogram, is defined by \(p(y|x)=\frac{n(x,y)}{n(x)}\), where n(x) is the number of pixels of region x and n(x,y) is the number of pixels of region x corresponding to bin y. Conditional probabilities fulfill \(\sum_{y \in \mathcal{Y}} p(y|x)=1\), \(\forall x \in \mathcal{X}\).

  • The input distribution p(X), which represents the probability of selecting each image region, is defined by \(p(x)=\frac{n(x)}{N}\) (i.e., the relative area of region x).

  • The output distribution p(Y), which represents the normalized frequency of each bin y, is given by \(p(y)=\sum_{x \in \mathcal{X}} p(x)p(y|x)=\frac{n(y)}{N}\), where n(y) is the number of pixels corresponding to bin y.

The mutual information (MI) between Y and X is given by

$$ I(X,Y) =\sum\limits_{x\in\mathcal{X}}p(x) \sum\limits_{y\in\mathcal{Y}}p(y|x) \frac{p(y|x)}{p(y)} $$
(2)

and represents the shared information or correlation between X and Y. It is important to note that the maximum MI that can be achieved in the partitioning process is the entropy H(Y) of the histogram, given by

$$ H(Y) = - \sum\limits_{y\in\mathcal{Y}} p(y) \log p(y). $$
(3)

The entropy H(Y) represents the information content of the image.

The partitioning algorithm is a greedy top-down procedure which partitions the image in quasi-homogeneous regions. The partitioning strategy takes the full image as the unique initial partition and progressively subdivides it with vertical or horizontal lines chosen according to the maximum MI gain for each partitioning step. This algorithm produces a binary space partition (BSP) driven by the maximum information gain and stops when a given mutual information ratio \(MIR=\frac{I(X,Y)}{H(Y)}\) or a predefined number of regions is achieved.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prados, F., Boada, I., Feixas, M. et al. Information-Theoretic Approach for Automated White Matter Fiber Tracts Reconstruction. Neuroinform 10, 305–318 (2012). https://doi.org/10.1007/s12021-012-9148-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-012-9148-z

Keywords

Navigation