Skip to main content
Log in

Classification of Imperfectly Time-Locked Image RSVP Events with EEG Device

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Classification based on EEG data in an RSVP experiment is considered. Although the latency in neural response relative to the stimulus onset time may be more realistically considered to vary across trials due to factors such as subject fatigue and environmental distractions, it is nevertheless assumed to be time-locked to the stimulus in most of the existing work as a means to alleviate the computational complexity. We consider here a more practical scenario that allows variation in response latency and develop a rigorous statistical formulation for modeling the uncertainty within the varying latency coupled with a likelihood ratio test (LRT) for classification. The new model not only improves the EEG classification performance, but also may predict the true stimulus onset time when this information is not precisely available. We test the proposed LRT algorithm on an EEG data set from an image RSVP experiment and show that, by admitting the latency variation, the proposed approach consistently outperforms a method that relies on perfect time-locking (AUC: 0.88 vs 0.86), especially when the stimulus onset time is not precisely available (AUC: 0.84 vs 0.71). Furthermore, the predicted stimulus onset times are highly enriched around the true onset time with p-value \(= 5.2 \times 10^{-44}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bigdely-Shamlo, N., Vankov, A., Ramirez, R., Makeig, S. (2008). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(5), 432.

    Article  PubMed  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). Journal of neuroscience methods, 134(1), 9.

    Article  PubMed  Google Scholar 

  • Eriksen, C., & Spencer, T. (1969). Journal of Experimental Psychology, 79(2p2), 1.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett, T. (2006). Pattern recognition letters, 27(8), 861.

    Article  Google Scholar 

  • Felzenszwalb, P., & Huttenlocher, D. (2005). International Journal of Computer Vision, 61(1), 55.

    Article  Google Scholar 

  • Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D. (2010). IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627.

    Article  PubMed  Google Scholar 

  • Fisher, R. (1936). Annals of Human Genetics, 7(2), 179.

    Google Scholar 

  • Gerson, A., Parra, L., Sajda, P. (2005). Neuroimage, 28(2), 342.

    Article  PubMed  Google Scholar 

  • Goupillaud, P., Grossmann, A., Morlet, J. (1984). Geoexploration, 23(1), 85.

    Article  Google Scholar 

  • Hild, K., Pavel, M., Erdogmus, D., Mathan, S. (2009). In Signals, systems and computers, 2009 conference record of the forty– third IEEE conference on asilomar (pp 51–54).

  • Luo, A., & Sajda, P. (2009). Comparing neural correlates of visual target detection in serial visual presentations having different temporal correlations. Frontiers in Human Neuroscience, 3. doi:10.3389/neuro.09.005.2009.

  • Makeig, S., Bell, A., Jung, T., Sejnowski, T., et al. (1996). In Advances in neural information processing systems pp(145–151).

  • Meng, J., Merio, L. M., Shamlo, N. B., Makeig, S., Robbins, K., Huang, Y. (2012). PLoS ONE, 7, e44464. doi:10.1371/journal.pone.0044464.

  • Niedermeyer, E., & Da Silva, F. (2005). Electroencephalography: basic principles, clinical applications and related fields. Lippincott Williams & Wilkins.

  • Philiastides, M., Ratcliff, R., Sajda, P. (2006). The Journal of Neuroscience, 26(35), 8965.

    Article  CAS  PubMed  Google Scholar 

  • Sajda, P., Gerson, A. D., Philiastides, M. G., Parra, L. C. (2007). Single-trial analysis of EEG during rapid visual discrimination: enabling cortically-coupled computer vision.Towards brain-computer interfacing.

  • Sutton, S., Braren, M., Zubin, J. (1965). E. John, Science, 150(3700), 1187.

    CAS  Google Scholar 

  • VanRullen, R., Busch, N., Drewes, J., Dubois, J. (2011). Frontiers in psychology, 2.

  • Vidal, J. (1973). Annual Review of Biophysics and Bioengineering, 2(1), 157.

    Article  CAS  PubMed  Google Scholar 

  • Wolpaw, J., Birbaumer, N., Heetderks, W., McFarland, D., Peckham, P., Schalk, G., Donchin, E., Quatrano, L., Robinson, C., Vaughan, T. (2000). IEEE Transactions on Rehabilitation Engineering, 8(2), 164.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Army Research Laboratory CANCTA initiative and the National Institute on Minority Health and Health Disparities (G12MD007591) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, J., Meriño, L.M., Robbins, K. et al. Classification of Imperfectly Time-Locked Image RSVP Events with EEG Device. Neuroinform 12, 261–275 (2014). https://doi.org/10.1007/s12021-013-9203-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-013-9203-4

Keywords