Abstract
This paper presents a fully automated pipeline for thickness profile evaluation and analysis of the human corpus callosum (CC) in 3D structural T 1-weighted magnetic resonance images. The pipeline performs the following sequence of steps: midsagittal plane extraction, CC segmentation algorithm, quality control tool, thickness profile generation, statistical analysis and results figure generator. The CC segmentation algorithm is a novel technique that is based on a template-based initialisation with refinement using mathematical morphology operations. The algorithm is demonstrated to have high segmentation accuracy when compared to manual segmentations on two large, publicly available datasets. Additionally, the resultant thickness profiles generated from the automated segmentations are shown to be highly correlated to those generated from the ground truth segmentations. The manual editing tool provides a user-friendly environment for correction of errors and quality control. Statistical analysis and a novel figure generator are provided to facilitate group-wise morphological analysis of the CC.




















Similar content being viewed by others
References
Adamson, C., Wood, A., Chen, J., Barton, S., Reutens, D., Pantelis, C., Velakoulis, D., Walterfang, M. (2011). Thickness profile generation for the corpus callosum using Laplace’s equation. Human Brain Mapping, 32, 2131–2140.
Ardekani, B. (2013). NITRC: Automatic Registration Toolbox. http://www.nitrc.org/projects/art.
Ardekani, B., Guckemus, S., Bachman, A., Hoptman, M., Wojtasze, M., Nierenberg, J. (2005). Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 142, 67–76.
Ardekani, B.A., & Bachman, A.H. (2009). Model-based automatic detection of the anterior and posterior commissures on MRI scans. NeuroImage, 46, 677–682.
Bachmann, S., Pantel, J., Flender, A., Bottmer, C., Essig, M., Schrder, J. (2003). Corpus callosum in first-episode patients with schizophrenia - a magnetic resonance imaging study. Psychological Medicine, 33, 1019–1027.
Baker, S., & Matthews, I. (2002). Lucas-kanade 20 years on: A unifying framework: Part 1 Technical report CMU-RI-TR-02-16, Robotics Institute.
Brambilla, P., Nicoletti, M., Sassi, R., Mallinger, A., Frank, E., Keshavan, M., Soares, J. (2004). Corpus callosum signal intensity in patients with bipolar and unipolar disorder. Journal of Neurology Neurosurgery, and Psychiatry, 75, 221–225.
Downhill, J.E., Buchsbaum, M.S., Wei, T., S.-Cohen, J., Hazlett, E.A., Haznedar, M.M., Silverman, J., Siever, L.J. (2000). Shape and size of the corpus callosum in schizophrenia and schizotypal personality disorder. Schizophrenia Research, 42, 193–208.
Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L. (2006). Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Medical Image Computing and Computer-Assisted Intervention (Vol. 9, pp. 58–66).
Guo, H., Rangarajan, A., Joshi, S., Younes. L. (2004). Non-rigid registration of shapes via diffeomorphic point matching. IEEE International Symposium on Biomedical Imaging: Nano to Macro (Vol. 1, pp. 924–927).
Haralick R., & Shapiro L. (1992). Computer and Robot Vision, Vol. 1: Addison-Wesley.
Hofer, S., & Frahm, J. (2006). Topography of the human corpus callosum revisited – comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. NeuroImage, 32, 989–994.
Hynd, G.W., Semrud-Clikeman, M., Lorys, A.R., Novey, E.S., Eliopulos, D., Lyytinen, H. (1991). Corpus callosum morphology in attention deficit-hyperactivity disorder: Morphometric analysis of mri. Journal of Learning Disabilities, 24.
Jenkinson, M., Bannister, P.R., Brady, M., Smith. S.M (2002). Improved optimisation for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.
Joshi, S.H., Narr, K.L., Philips, O.R., Nuechterlein, K.H., Asarnow, R.F., Toga, A.W., Woods, R.P. (2013). Statistical shape analysis of the corpus callosum in schizophrenia. NeuroImage, 64, 547–559.
Klein, A., & Tourville, J. (2012). 101 labeled brain images and a consistent human cortical labeling protocol. Frontiers in Neuroscience, 6. http://journal.frontiersin.org/Journal/10.3389/fnins.2012.00171/full
Lacerda, A.L., Brambilla, P., Sassi, R.B., Nicoletti, M.A., Mallinger, A.G., Frank, E., Kupfer, D.J., Keshavan, M.S., Soares, J.C. (2005). Anatomical MRI study of corpus callosum in unipolar depression. Journal of Psychiatric Research, 39, 347–354.
Lee, S.H., Yu, D., Bachman, A.H., Lim, J., Ardekani, B.A. (2014). Application of fused lasso logistic regression to the study of corpus callosum thickness in early alzheimer’s disease. Journal of Neuroscience Methods, 221, 78–84.
Lewis J.P. (1995). Fast normalized cross-correlation. http://scribblethink.org/Work/nvisionInterface/nip.pdf. Accessed 27 July 2013.
Lucas, B.D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision.. Proceedings of Imaging Understanding Workshop, (pp. 121–130).
Luders, E., Narr, K., Bilder, R., Thompson, P., Szeszko, P., Hamilton, L., Toga, A. (2007). Positive correlations between corpus callosum thickness and intelligence. NeuroImage, 37, 1457–1464.
Lyoo, I.K., Kwon, J.S., Lee, S.J., Han, M.H., Chang, C.-G., Seo, C.S., Lee, S.I., Renshaw, P.F. (2002). Decrease in genu of the corpus callosum in medication-nave, early-onset dysthymia and depressive personality disorderr. Biological Psychiatry, 52, 1134– 1143.
Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L. (2007). Open access series of imaging studies (OASIS): Cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. Journal of Cognitive Neuroscience, 19, 1498–1507.
McInerney, T., Hamarneh, G., Shenton, M., Terzopoulos, D. (2002). Deformable organisms for automatic medical image analysis. Medical Image Analysis, 6, 251–266.
Mitchell, T.N., Free, S.L., Merschhemke, M., Lemieux, L., Sisodiya, S.M., Shorvon, S.D. (2003). Reliable callosal measurement: population normative data confirm sex-related differences. American Journal of Neuroradiology, 24, 410–418.
Otsu, N. (1979). A threshold selection method from gray-level histograms. Image Processing, Systems Man and Cybernetics, 9, 62–66.
Peters, M., Oeltze, S., Seminowicz, D., Steinmetz, H., Koeneke, S., Jäncke, L. (2002). Division of the corpus callosum into subregions. Brain and Cognition, 50, 62–72.
Riise, J., & Pakkenberg, B. (2011). Stereological estimation of the total number of myelinated callosal fibers in human subjects. Journal of Anatomy, 218, 277–284.
The MathWorks (2013). MATLAB.
Vachet, C., Yvernault, B., Bhatt, K., Smithm, R.G., Gerig, G., Hazlett, H.C., Styner, M. (2012). Automatic corpus callosum segmentation using a deformable active fourier contour model. Proceedings of SPIE (Vol. 8317, pp. 831707–831707–7).
van Ginneken, B., Frangi, A.F., Staal, J.J., ter Haar Romeny, B.M., Viergever, M.A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21, 924–933.
Vidal, C.N., Nicolson, R., DeVito, T.J., Hayashi, K.M., Geaga, J.A., Drost, D.J., Williamson, P.C., Rajakumar, N., Sui, Y., Dutton, R.A., Toga, A.W., Thompson, P.M. (2006). Mapping corpus callosum deficits in autism: An index of aberrant cortical connectivity. Biological Psychiatry, 60, 218–225.
Vincent, L. (1993). Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Transactions on Image Processing, 2, 176–201.
Walterfang, M., Yücel, M., amd D.C. Reutens, S.B., Wood A.G., Chen, J., Lorenzetti, V., Velakoulis, D., Pantelis, C., Allen, N.B. (2009). Corpus callosum size and shape in individuals with current and past depression. Journal of Affective Disorders, 115, 411–420.
Westfall, P.H., & Young, S.S. (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment, Wiley Series in Probability and Statistics, 1st edn.: Wiley-Interscience.
Witelson, S.F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain, 112, 799–835.
Wu, J.C., Bchsbaum, M.S., Johnson, J.C., Hershey, T.G., Wagner, E.A., Tung, C., Lottenberg, S. (1993). Magnetic resonance and positron emission tomography imaging of the corpus callosum: size, shape and metabolic rate in unipolar depression. Journal of Affective Disorders, 28, 15–25.
Yushkevich, P.A., Piven, J., Hazlett, C., Smith, H., Smith, G., Ho, R., Ho, S., Gee, J.C., Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.
Acknowledgments
This research was conducted within the Developmental Imaging research group, Murdoch Childrens Research Institute at the Children’s MRI Centre, Royal Children’s Hospital, Melbourne Victoria. It was supported by the Murdoch Childrens Research Institute, Royal Children’s Hospital, The University of Melbourne Department of Paediatrics and the Victorian Government’s Operational Infrastructure Support Program.
Conflict of interests
No authors report any conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Additional information
Information Sharing Statement
The Corpus Callosum Thickness Profile Analysis Pipeline (RRID:nlx 157716) software is available at the following URL: https://www.nitrc.org/projects/ccsegthickness. There is a downloadable user guide in PDF format on the website.
Appendix
Appendix
This appendix defines the morphological operations of dilation, erosion, opening, closing. All of these are greyscale with the binary image being a special case of pixels with greyscale values of 0 or 1. Greyscale dilation and erosion for each image pixel x and structuring element SE are defined as:
for brevity the pixel indices will be dropped, i.e. I ⊕ SE and I ⊖ SE will be used for (1) and (2) respectively.
Morphological opening and closing are defined as follows:
The standard structuring elements used in this paper are as follows: disk D r , box B r , where r denotes the radius or size. Let the structuring element Z ϕ be a thin ellipse whose major axis forms the angle ϕ with the x axis.
Rights and permissions
About this article
Cite this article
Adamson, C., Beare, R., Walterfang, M. et al. Software Pipeline for Midsagittal Corpus Callosum Thickness Profile Processing. Neuroinform 12, 595–614 (2014). https://doi.org/10.1007/s12021-014-9236-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-014-9236-3