Skip to main content
Log in

Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Despite the significant advances in the development of automated image analysis algorithms for the detection and extraction of neuronal structures, current software tools still have numerous limitations when it comes to the detection and analysis of dendritic spines. The problem is especially challenging in in vivo imaging, where the difficulty of extracting morphometric properties of spines is compounded by lower image resolution and contrast levels native to two-photon laser microscopy. To address this challenge, we introduce a new computational framework for the automated detection and quantitative analysis of dendritic spines in vivo multi-photon imaging. This framework includes: (i) a novel preprocessing algorithm enhancing spines in a way that they are included in the binarized volume produced during the segmentation of foreground from background; (ii) the mathematical foundation of this algorithm, and (iii) an algorithm for the detection of spine locations in reference to centerline trace and separating them from the branches to whom spines are attached to. This framework enables the computation of a wide range of geometric features such as spine length, spatial distribution and spine volume in a high-throughput fashion. We illustrate our approach for the automated extraction of dendritic spine features in time-series multi-photon images of layer 5 cortical excitatory neurons from the mouse visual cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agam, G., & Wu, C. (2005). Probabilistic modeling based vessel enhancement in thoracic ct scans, IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, CVPR 2005. IEEE, (Vol. 2 pp. 649–654).

  • Bai, W., Zhou, X., Ji, L., Cheng, J., & Wong, S.T. (2007). Automatic dendritic spine analysis in two-photon laser scanning microscopy images. Cytometry Part A, 71(10), 818–826.

    Article  Google Scholar 

  • Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects. Neuroinformatics, 9(2-3), 181–191.

    Article  PubMed  Google Scholar 

  • Blumer, C., Vivien, C., Genoud, C., Perez-Alvarez, A., Wiegert, J.S., Vetter, T., & Oertner, T.G. (2015). Automated analysis of spine dynamics on live ca1 pyramidal cells. Medical Image Analysis, 19(1), 87–97.

    Article  PubMed  Google Scholar 

  • Cheng, J., Zhou, X., Miller, E., Witt, R.M., Zhu, J., Sabatini, B.L., & Wong, S.T. (2007). A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy. Journal of Neuroscience Methods, 165(1), 122–134.

    Article  PubMed  PubMed Central  Google Scholar 

  • Donohue, D.E., & Ascoli, G.A. (2011). Automated reconstruction of neuronal morphology: An overview. Brain Research Reviews, 67(1–2), 94–102. doi:10.1016/j.brainresrev.2010.11.003. http://www.sciencedirect.com/science/article/pii/S0165017310001293.

    Article  PubMed  Google Scholar 

  • Fan, J., Zhou, X., Dy, J.G., Zhang, Y., & Wong, S.T. (2009). An automated pipeline for dendrite spine detection and tracking of 3d optical microscopy neuron images of in vivo mouse models. Neuroinformatics, 7 (2), 113–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaser, J.R., & Glaser, E.M. (1990). Neuron imaging with neurolucida — a pc-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14(5), 307–317. doi:10.1016/0895-6111(90)90105-K. http://www.sciencedirect.com/science/article/pii/089561119090105K, progress in Imaging in the Neurosciences Using Microcomputers and Workstations.

    Article  CAS  PubMed  Google Scholar 

  • He, T., Xue, Z., & Wong, S.T. (2012a). A novel approach for three dimensional dendrite spine segmentation and classification, SPIE Medical Imaging, International Society for Optics and Photonics (pp. 831,437–831,437).

  • He, T., Xue, Z., Kim, Y., & Wong, S.T. (2012b). Three-dimensional dendritic spine detection based on minimal cross-sectional curvature, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI). IEEE (pp. 1639–1642).

  • Hernandez-Herrera, P., Papadakis, M., & Kakadiaris, I.A. (2014). Segmentation of neurons based on one-class classification, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI). doi:10.1109/ISBI.2014.6868119 (pp. 1316–1319).

    Chapter  Google Scholar 

  • Hernandez-Herrera, P., Papadakis, M., & Kakadiaris, I.A. (2016). Multi-scale segmentation of neurons based on one-class classification. Journal of Neuroscience Methods, 266, 94–106. doi:10.1016/j.jneumeth.2016.03.019.

    Article  PubMed  Google Scholar 

  • Herrera-Hernandez, P. (2015). 3-d morphology of neurons. Phd: University of Houston.

  • Janoos, F., Mosaliganti, K., Xu, X., Machiraju, R., Huang, K., & Wong, S.T. (2009). Robust 3d reconstruction and identification of dendritic spines from optical microscopy imaging. Medical Image Analysis, 13(1), 167–179.

    Article  PubMed  Google Scholar 

  • Jiménez, D., Papadakis, M., Labate, D., & Kakadiaris, I.A. (2013). Improved automatic centerline tracing for dendritic structures, 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI). IEEE (pp. 1050–1053).

    Chapter  Google Scholar 

  • Jimėnez, D, Labate, D., Kakadiaris, I.A., & Papadakis, M. (2015). Improved automatic centerline tracing for dendritic and axonal structures. Neuroinformatics, 13(2), 227–244. 10.1007/s12021-014-9256-z.

  • Koh, Y.Y. (2001). Automated recognition algorithms for neural studies. Citeseer: PhD thesis.

    Google Scholar 

  • Krissian, K., Malandain, G., Ayache, N., Vaillant, R., & Trousset, Y. (2000). Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding, 80(2), 130–171.

    Article  Google Scholar 

  • Li, Q., & Deng, Z. (2012). A surface-based 3-d dendritic spine detection approach from confocal microscopy images. IEEE Transactions on Image Processing, 21(3), 1223–1230. doi:10.1109/TIP.2011.2166973.

    Article  PubMed  Google Scholar 

  • MBF Bioscience (2011). Autospine. http://www.mbfbioscience.com/autospine.

  • Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77(7), 693–704.

    Article  Google Scholar 

  • Morrison, P., & Zou, J.J. (2006). Skeletonization based on error reduction. Pattern Recognition, 39(6), 1099–1109.

    Article  Google Scholar 

  • Penzes, P., Cahill, M.E., Jones, K.A., VanLeeuwen, J.E., & Woolfrey, K.M. (2011). Dendritic spine pathology in neuropsychiatric disorders. Neural Neuroscience, 14, 285–293.

    CAS  Google Scholar 

  • Rodriguez, A., Ehlenberger, D.B., Dickstein, D.L., Hof, P.R., & Wearne, S.L. (2008). Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PloS One, 3(4), e1997.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sajo, M., Ellis-Davies, G., & Morishita, H. (2016). Lynx1 limits dendritic spine turnover in the adult visual cortex. Journal of Neuroscience, 36(36), 9472–9478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria-Pang, A., Hernandez-Herrera, P., Papadakis, M., Saggau, P., & Kakadiaris, I.A. (2015). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images using 3d tubular models. Neuroinformatics, 13(3), 297. doi:10.1007/s12021-014-9253-2.

    Article  PubMed  Google Scholar 

  • Schaap, M., Manniesing, R., Smal, I., Van Walsum, T., Van Der Lugt, A., & Niessen, W. (2007). Bayesian tracking of tubular structures and its application to carotid arteries in cta. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007 (pp. 562–570). Springer.

  • Scorcioni, R, & Polavaram, S.A.G. (2008). L-measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876. doi:10.1038/nprot.2008.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, P., Huang, Y., & Hong, J. (2014). Automated three-dimensional reconstruction and morphological analysis of dendritic spines based on semi-supervised learning. Biomedical Optics Express, 5(5), 1541–1553.

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanger, S.A., Yao, X., Gross, C., & Bassell, G.J. (2011). Automated 4d analysis of dendritic spine morphology: applications to stimulus-induced spine remodeling and pharmacological rescue in a disease model. Molecular Brain, 4(1), 1.

    Article  Google Scholar 

  • Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., & Roysam, B. (2007). Robust 3-d modeling of vasculature imagery using superellipsoids. IEEE Transactions on Medical Imaging, 26(2), 223–237.

  • Zhang, Y., Chen, K., Baron, M., Teylan, M.A., Kim, Y., Song, Z., Greengard, P., & Wong, S.T. (2010). A neurocomputational method for fully automated 3d dendritic spine detection and segmentation of medium-sized spiny neurons. Neuroimage, 50(4), 1472–1484.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., & Toga, A.W. (1999). Efficient skeletonization of volumetric objects. IEEE Transactions on Visualization and Computer Graphics, 5(3), 196–209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y., Kaufman, A., & Toga, A.W. (1998). Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. The Visual Computer, 14(7), 303–314.

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Professor Tara Keck of the MRC Centre for Developmental Neurobiology, King’s College, London, UK and Dr. Mari Sajo, of the Icahn School of Medicine at Mount Sinai for providing us with data sets and guidance for the experimental verification of our method. Without their help this work would never have come to realization. Many thanks to Dr. Ryan Ash, MD, of the Baylor College of Medicine for this help with manual validations and Neurolucida 360 and for sharing with us his insight on spines. Also many thanks have to go to our doctoral student Mr. Nikolaos Karantzas for helping us with the validation experiments. Finally, we thank Professor Ioannis Kakadiaris of the University of Houston for several helpful discussions on 3-D volume segmentation.

This work was partially supported by NSF-DMS 1320910 and by a GEAR 2015 grant awarded by the Division of Research of the University of Houston and by a CONACYT graduate scholarship. Last, but, by no means least, we express our warm thanks to the reviewers who gave us insightful comments and suggestions to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K., Hernandez-Herrera, P., Labate, D. et al. Automated 3-D Detection of Dendritic Spines from In Vivo Two-Photon Image Stacks. Neuroinform 15, 303–319 (2017). https://doi.org/10.1007/s12021-017-9332-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9332-2

Keywords

Navigation