Skip to main content
Log in

SpiCoDyn: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings

  • Software Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

We implemented an automated and efficient open-source software for the analysis of multi-site neuronal spike signals. The software package, named SpiCoDyn, has been developed as a standalone windows GUI application, using C# programming language with Microsoft Visual Studio based on .NET framework 4.5 development environment. Accepted input data formats are HDF5, level 5 MAT and text files, containing recorded or generated time series spike signals data. SpiCoDyn processes such electrophysiological signals focusing on: spiking and bursting dynamics and functional-effective connectivity analysis. In particular, for inferring network connectivity, a new implementation of the transfer entropy method is presented dealing with multiple time delays (temporal extension) and with multiple binary patterns (high order extension). SpiCoDyn is specifically tailored to process data coming from different Multi-Electrode Arrays setups, guarantying, in those specific cases, automated processing. The optimized implementation of the Delayed Transfer Entropy and the High-Order Transfer Entropy algorithms, allows performing accurate and rapid analysis on multiple spike trains from thousands of electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bal-Price, A. K., Hogberg, H. T., Buzanska, L., Lenas, P., van Vliet, E., & Hartung, T. (2010). In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints. Neurotoxicology, 31(5), 545–554. https://doi.org/10.1016/j.neuro.2009.11.006.

    Article  CAS  PubMed  Google Scholar 

  • Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  CAS  PubMed  Google Scholar 

  • Bennett, K., & Robertson, J. (2011). The impact of the data archiving file format on scientific computing and performance of image processing algorithms in MATLAB using large HDF5 and XML multimodal and hyperspectral data sets, MATLAB - A ubiquitous tool for the practical engineer. In C. Ionescu (Ed.), InTech. https://doi.org/10.5772/19410. Available from: https://www.intechopen.com/books/matlab-a-ubiquitous-tool-for-the-practical-engineer/the-impact-of-the-data-archiving-file-format-on-scientific-computing-and-performance-of-image-proces.

  • Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., et al. (2009). Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab on a Chip, 9, 2644–2651.

    Article  CAS  PubMed  Google Scholar 

  • Bologna, L. L., Pasquale, V., Garofalo, M., Gandolfo, M., Baljon, P. L., Maccione, A., et al. (2010). Investigating neuronal activity by SPYCODE multi-channel data analyzer. Neural Networks, 23(6), 685–697. https://doi.org/10.1016/j.neunet.2010.05.002.

    Article  PubMed  Google Scholar 

  • Buzsaki, G. (2004). Large-scale recording of neuronal ensembles. Nat Neurosci, 7(5), 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Chang, E. F. (2015). Towards large-scale, human-based, mesoscopic neurotechnologies. Neuron, 86(1), 68–78. https://doi.org/10.1016/j.neuron.2015.03.037.

    Article  CAS  PubMed  Google Scholar 

  • Chiappalone, M., Novellino, A., Vajda, I., Vato, A., Martinoia, S., & van Pelt, J. (2005). Burst detection algorithms for the analysis of spatio-temporal patterns in cortical networks of neurons. Neurocomputing, 65-66, 653–662.

    Article  Google Scholar 

  • Chiappalone, M., Bove, M., Vato, A., Tedesco, M., & Martinoia, S. (2006). Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Research, 1093, 41–53.

    Article  CAS  PubMed  Google Scholar 

  • Egert, U., Knott, T., Schwarz, C., Nawrot, M., Brandt, A., Rotter, S., et al. (2002). MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. Journal of Neuroscience Methods, 117, 33–42.

    Article  CAS  PubMed  Google Scholar 

  • Eichler, M., Dahlhaus, R., & Sandkuhler, J. (2003). Partial correlation analysis for the identification of synaptic connections. Biological Cybernetics, 89, 289–302.

    Article  PubMed  Google Scholar 

  • Eversmann, B., Jenker, M., Hofmann, F., Paulus, C., Brederlow, R., Holzapfl, B., et al. (2003). A 128 x 128 CMOS biosensor array for extracellular recording of neural activity. IEEE Journal of Solid State Circuits, 38, 2306–2317.

    Article  Google Scholar 

  • Eytan, D., Minerbi, A., Ziv, N., & Marom, S. (2004). Dopamine-induced dispersion of correlations between action potentials in networks of cortical neurons. Journal of Neurophysiology, 92(3), 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874.

    Article  Google Scholar 

  • Garofalo, M., Nieus, T., Massobrio, P., & Martinoia, S. (2009). Evaluation of the performance of information theory-based methods and cross-correlation to estimate the functional connectivity in cortical networks. PLoS One, 4(8), e6482. https://doi.org/10.1371/journal.pone.0006482.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grace, A. A., & Bunney, B. S. (1984). The control of firing pattern in nigral dopamine neurons: burst firing. Journal of Neuroscience, 4(11), 2877.

    CAS  PubMed  Google Scholar 

  • HDFGroup (2013). Hierarchical data format http://www.hdfgroup.org/.

  • Hogberg, H. T., Sobanski, T., Novellino, A., Whelan, M., Weiss, D. G., & Bal-Price, A. K. (2011). Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: Evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology, 32(1), 158–168. https://doi.org/10.1016/j.neuro.2010.10.007.

    Article  CAS  PubMed  Google Scholar 

  • Humphries, M. D., & Gurney, K. (2008). Network 'Small-World-Ness': a quantitative method for determining canonical network equivalence. PLoS One, 3(4), e0002051.

    Article  PubMed  Google Scholar 

  • Ito, S., Hansen, M. E., Heiland, R., Lumsdaine, A., Litke, A. M., & Beggs, J. M. (2011). Extending Transfer Entropy Improves Identification of Effective Connectivity in a Spiking Cortical Network Model. PLoS One, 6(11), e27431. https://doi.org/10.1371/journal.pone.0027431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich, E. M., Gally, J. A., & Edelman, G. M. (2004). Spike-timing dynamics of neuronal groups. Cerebral Cortex, 14, 933–944.

    Article  PubMed  Google Scholar 

  • Jones, I. L., Livi, P., Lewandowska, M. K., Fiscella, M., Roscic, B., & Hierlemann, A. (2011). The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics. Analytical Bioanalytical Chemistry, 399(7), 2313–2329. https://doi.org/10.1007/s00216-010-3968-1.

    Article  CAS  PubMed  Google Scholar 

  • Kapucu, F. E., Tanskanen, J., Mikkonen, J., Ylä-Outinen, L., Narkilahti, S., & Hyttinen, J. (2012). Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics. (Methods). Frontiers in Computational Neuroscience, 6(38). https://doi.org/10.3389/fncom.2012.00038.

  • Lungarella, M., Pitti, A., & Kuniyoshi, Y. (2007). Information transfer at multiple scales. Phys Rev E, 76, 0561171–05611710.

    Article  Google Scholar 

  • Maccione, A., Gandolfo, M., Massobrio, P., Novellino, A., Martinoia, S., & Chiappalone, M. (2009). A novel algorithm for precise identification of spikes in extracellularly recorded neuronal signals. Journal of Neuroscience Methods, 177(1), 241–249.

    Article  PubMed  Google Scholar 

  • Maccione, A., Gandolfo, M., Zordan, S., Amin, H., Di Marco, S., Nieus, T., et al. (2015). Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes. Brain Research Bulletin, 119(Part B), 118–126. https://doi.org/10.1016/j.brainresbull.2015.07.008.

    Article  PubMed  Google Scholar 

  • Mahmud, M., & Vassanelli, S. (2016). Processing and analysis of multichannel extracellular neuronal signals: State-of-the-Art and Challenges. (Review). Frontiers in Neuroscience, 10, 248. https://doi.org/10.3389/fnins.2016.00248.

    PubMed  PubMed Central  Google Scholar 

  • Mahmud, M., Pulizzi, R., Vasilaki, E., & Giugliano, M. (2014). QSpike tools: a generic framework for parallel batch preprocessing of extracellular neuronal signals recorded by substrate microelectrode arrays. Frontiers in Neuroinformatics, 8, 26. https://doi.org/10.3389/fninf.2014.00026.

    Article  PubMed  PubMed Central  Google Scholar 

  • Makarov, V. A., Panetsos, F., & de Feo, O. (2005). A method for determining neural connectivity and inferring the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods, 144(2), 265–279. https://doi.org/10.1016/j.jneumeth.2004.11.013.

    Article  PubMed  Google Scholar 

  • Massobrio, P., Tessadori, J., Chiappalone, M., & Ghirardi, M. (2015). In vitro studies of neuronal networks and synaptic plasticity in invertebrates and in mammals using Multi-Electrode Arrays (MEAs). Neural Plasticity, 2015. https://doi.org/10.1155/2015/196195.

  • Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS One, 2(5), e439. https://doi.org/10.1371/journal.pone.0000439.

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier, R., Egert, U., Aertsen, A., & Nawrot, M. P. (2008). FIND-a unified framework for neuronal data analysis. Neural Networks, 21, 1085–1093.

    Article  PubMed  Google Scholar 

  • Muller, J., Ballini, M., Livi, P., Chen, Y., Radivojevic, M., Shadmani, A., et al. (2015). High-resolution CMOS MEA platform to study neurons at subcellular, cellular, and network levels. Lab on a Chip, 15(13), 2767–2780. https://doi.org/10.1039/c5lc00133a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newman, M. E. J., Moore, C., & Watts, D. J. (2000). Mean-field solution of the small-world network model. Physical Review Letters, 84, 3201–3204.

    Article  CAS  PubMed  Google Scholar 

  • Overbey, L. A., & Todd, M. D. (2009). Dynamic system change detection using a modification of the transfer entropy. Journal of Sound and Vibration, 322(1–2), 438–453. https://doi.org/10.1016/j.jsv.2008.11.025.

    Article  Google Scholar 

  • Pasquale, V., Martinoia, S., & Chiappalone, M. (2009). A self-adapting approach for the detection of bursts and network bursts in neuronal cultures. Journal of Computational Neuroscience, 29(1–2), 213–229. https://doi.org/10.1007/s10827-009-0175-1.

    PubMed  Google Scholar 

  • Pastore, V. P., Poli, D., Godjoski, A., Martinoia, S., & Massobrio, P. (2016). ToolConnect: a functional connectivity toolbox for in vitro networks. Frontiers in Neuroinformatics, 10(13). https://doi.org/10.3389/fninf.2016.00013.

  • Poli, D., Pastore, V. P., & Massobrio, P. (2015). Functional connectivity in in vitro neuronal assemblies. Frontiers in Neural Circuits, 9(57). https://doi.org/10.3389/fncir.2015.00057.

  • Poli, D., Pastore, V. P., Martinoia, S., & Massobrio, P. (2016). From functional to structural connectivity using partial correlation in neuronal assemblies. Journal of Neural Engineering, 13(2), 026023.

    Article  PubMed  Google Scholar 

  • Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. (Research Support, Non-U.S. Gov't). NeuroImage, 52(3), 1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003.

    Article  PubMed  Google Scholar 

  • Schreiber, T. (2000). Measuring Information Transfer. Physical Review Letters, 85(2), 461–464.

    Article  CAS  PubMed  Google Scholar 

  • Schröder, S., Cecchetto, C., Keil, S., Mahmud, M., Brose, E., Özgü, D., et al. (2015). CMOS-compatible purely capacitive interfaces for high-density in-vivo recording from neural tissue. In 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), 22–24 Oct. 2015 (pp. 1–4). https://doi.org/10.1109/BioCAS.2015.7348358.

  • Shulyzki, R., Abdelhalim, K., Bagheri, A., Salam, M. T., Florez, C. M., Velazquez, J. L. P., et al. (2015). 320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation. IEEE Transactions on Biomedical Circuits and Systems, 9(1), 34–49. https://doi.org/10.1109/TBCAS.2014.2312552.

    Article  PubMed  Google Scholar 

  • Song, S., Miller, K. D., & Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience, 3(9), 919–926.

    Article  CAS  PubMed  Google Scholar 

  • Tam, D. C. (2002). An alternate burst analysis for detecting intra-burst firings based on inter-burst periods. Neurocomputing, 44-46, 1155–1159.

    Article  Google Scholar 

  • Van Bussel, F., Kriener, B., & Timme, M. (2011). Inferring synaptic connectivity from spatio-temporal spike patterns. (Original Research). Frontiers in Computational Neuroscience, 5, 3. https://doi.org/10.3389/fncom.2011.00003.

    PubMed  PubMed Central  Google Scholar 

  • van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends Cognitive Science, 17(12), 683–696. https://doi.org/10.1016/j.tics.2013.09.012.

    Article  Google Scholar 

  • Vassanelli, S. (2014). Multielectrode and Multitransistor Arrays for In Vivo Recording. In M. De Vittorio, L. Martiradonna, & J. Assad (Eds.), Nanotechnology and Neuroscience: Nano-electronic, Photonic and Mechanical Neuronal Interfacing (pp. 239–267). New York: Springer New York.

    Chapter  Google Scholar 

  • Vato, A., Bonzano, L., Chiappalone, M., Cicero, S., Morabito, F., Novellino, A., et al. (2004). Spike manager: a new tool for spontaneous and evoked neuronal networks activity characterization. Neurocomputing, 58(60), 1153–1161.

    Article  Google Scholar 

  • Viswam, V., Dragas, J., Muller, J., & Hierlemann, A. (2016). Multi-functional microelectrode array system featuring 59,760 electrodes, 2048 electrophysiology channels, impedance and neurotransmitter measurement units. In IEEE International Solid-State Circuits Conference, San Francisco (US), 2016 (pp 394–396): IEEE. doi:https://doi.org/10.1109/ISSCC.2016.7418073.

  • Wagenaar, D., DeMarse, T. B., & Potter, S. M. (2005). MeaBench: A toolset for multi-electrode data acquisition and on-line analysis. In 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, 16-19 March 2005: IEEE. doi:https://doi.org/10.1109/CNE.2005.1419673.

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Yeung, M. K. S., Tegnér, J., & Collins, J. J. (2002). Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings National Academy Science, 99(9), 6163–6168. https://doi.org/10.1073/pnas.092576199.

    Article  CAS  Google Scholar 

  • Yuste, R. (2015). From the neuron doctrine to neural networks. Nature Review Neuroscience, 16, 487–497.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Massobrio.

Electronic supplementary material

ESM 1

(PDF 3456 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastore, V.P., Godjoski, A., Martinoia, S. et al. SpiCoDyn: A Toolbox for the Analysis of Neuronal Network Dynamics and Connectivity from Multi-Site Spike Signal Recordings. Neuroinform 16, 15–30 (2018). https://doi.org/10.1007/s12021-017-9343-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-017-9343-z

Keywords

Navigation