Skip to main content

Advertisement

Log in

Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

White matter hyperintensities (WMH) are a hallmark of small vessel diseases (SVD). Yet, no automated segmentation method is readily and widely used, especially in patients with extensive WMH where lesions are close to the cerebral cortex. BIANCA (Brain Intensity AbNormality Classification Algorithm) is a new fully automated, supervised method for WMH segmentation. In this study, we optimized and compared BIANCA against a reference method with manual editing in a cohort of patients with extensive WMH. This was achieved in two datasets: a clinical protocol with 90 patients having 2-dimensional FLAIR and an advanced protocol with 66 patients having 3-dimensional FLAIR. We first determined simultaneously which input modalities (FLAIR alone or FLAIR + T1) and which training sets were better compared to the reference. Three strategies for the selection of the threshold that is applied to the probabilistic output of BIANCA were then evaluated: chosen at the group level, based on Fazekas score or determined individually. Accuracy of the segmentation was assessed through measures of spatial agreement and volumetric correspondence with respect to reference segmentation. Based on all our tests, we identified multimodal inputs (FLAIR + T1), mixed WMH load training set and individual threshold selection as the best conditions to automatically segment WMH in our cohort. A median Dice similarity index of 0.80 (0.80) and an intraclass correlation coefficient of 0.97 (0.98) were obtained for the clinical (advanced) protocol. However, Bland-Altman plots identified a difference with the reference method that was linearly related to the total burden of WMH. Our results suggest that BIANCA is a reliable and fast segmentation method to extract masks of WMH in patients with extensive lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Different patterns of WMH in CADASIL and sporadic SVD.
Fig. 2: Overview of the study protocol.
Fig. 3: Examples of BIANCA results for different input modalities: FLAIR alone or FLAIR + T1 in the 2 datasets.
Fig. 4: Box plots of SI for different thresholds for all tests of BIANCA optimization phase I.
Fig. 5: Comparison of BIANCA results and reference segmentation with the best input modality and training set: visualization of true positives, false positives and false negatives.
Fig. 6: Box plots of SI in different WMH load subsets for threshold selection.
Fig. 7: Bland-Altman plots for the different strategies of threshold selection.

Similar content being viewed by others

References

  • Auer, D. P., Pütz, B., Gössl, C., Elbel, G.-K., Gasser, T., & Dichgans, M. (2001). Differential lesion patterns in CADASIL and sporadic subcortical arteriosclerotic encephalopathy: MR imaging study with statistical parametric group comparison 1. Radiology, 218(2), 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Bland, J. M., & Altman, D. G. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet (London, England), 1(8476), 307–310.

    Article  CAS  Google Scholar 

  • Caligiuri, M. E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., & Cherubini, A. (2015). Automatic detection of white matter Hyperintensities in healthy aging and pathology using magnetic resonance imaging: A review. Neuroinformatics, 13(3), 261–276. https://doi.org/10.1007/s12021-015-9260-y.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chabriat, H., Joutel, A., Dichgans, M., Tournier-Lasserve, E., & Bousser, M.-G. (2009). Cadasil. The Lancet Neurology, 8(7), 643–653.

    Article  PubMed  Google Scholar 

  • Chabriat, H., Hervé, D., Duering, M., Godin, O., Jouvent, E., Opherk, C., Alili, N., Reyes, S., Jabouley, A., Zieren, N., Guichard, J. P., Pachai, C., Vicaut, E., & Dichgans, M. (2016). Predictors of clinical worsening in cerebral autosomal dominant Arteriopathy with subcortical infarcts and leukoencephalopathy prospective cohort study. Stroke, 47(1), 4–11.

    Article  PubMed  Google Scholar 

  • Damangir, S., Manzouri, A., Oppedal, K., Carlsson, S., Firbank, M. J., Sonnesyn, H., Tysnes, O. B., O'Brien, J. T., Beyer, M. K., Westman, E., Aarsland, D., Wahlund, L. O., & Spulber, G. (2012). Multispectral MRI segmentation of age related white matter changes using a cascade of support vector machines. Journal of the Neurological Sciences, 322(1–2), 211–216. https://doi.org/10.1016/j.jns.2012.07.064.

    Article  PubMed  Google Scholar 

  • Damangir, S., Westman, E., Simmons, A., Vrenken, H., Wahlund, L.-O., & Spulber, G. (2017). Reproducible segmentation of white matter hyperintensities using a new statistical definition. Magma, 30(3), 227–237. https://doi.org/10.1007/s10334-016-0599-3.

    Article  PubMed  CAS  Google Scholar 

  • De Guio, F., Reyes, S., Duering, M., Pirpamer, L., Chabriat, H., & Jouvent, E. (2014). Decreased T1 contrast between gray matter and normal-appearing white matter in CADASIL. American Journal of Neuroradiology, 35(1), 72–76. https://doi.org/10.3174/ajnr.A3639.

    Article  PubMed  Google Scholar 

  • De Guio, F., Jouvent, E., Biessels, G. J., Black, S. E., Brayne, C., Chen, C., et al. (2016). Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 36(8), 1319–1337. https://doi.org/10.1177/0271678X16647396.

    Article  Google Scholar 

  • De Guio, F., Vignaud, A., Chabriat, H., & Jouvent, E. (2017). Different types of white matter hyperintensities in CADASIL: Insights from 7-tesla MRI. Journal of Cerebral Blood Flow and Metabolism, 0271678X1769016. https://doi.org/10.1177/0271678X17690164.

  • Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I., & Zimmerman, R. A. (1987). MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. American Journal of Roentgenology, 149(2), 351–356.

    Article  PubMed  CAS  Google Scholar 

  • Griffanti, L., Zamboni, G., Khan, A., Li, L., Bonifacio, G., Sundaresan, V., Schulz, U. G., Kuker, W., Battaglini, M., Rothwell, P. M., & Jenkinson, M. (2016). BIANCA (brain intensity AbNormality classification algorithm): A new tool for automated segmentation of white matter hyperintensities. NeuroImage, 141, 191–205. https://doi.org/10.1016/j.neuroimage.2016.07.018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grimaud, J., Lai, M., Thorpe, J., Adeleine, P., Wang, L., Barker, G. J., Plummer, D. L., Tofts, P. S., McDonald, W. I., & Miller, D. H. (1996). Quantification of MRI lesion load in multiple sclerosis: A comparison of three computer-assisted techniques. Magnetic Resonance Imaging, 14(5), 495–505.

    Article  PubMed  CAS  Google Scholar 

  • Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2), 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Mangin, J.-F. (Ed.). (2000). IEEE workshop on mathematical methods in biomedical image analysis: Proceedings, Hilton Head Island, South Carolina, June 11–12, 2000. Los Alamitos, Calif: IEEE Computer Society.

    Google Scholar 

  • Olsson, E., Klasson, N., Berge, J., Eckerström, C., Edman, Å., Malmgren, H., & Wallin, A. (2013). White matter lesion assessment in patients with cognitive impairment and healthy controls: Reliability comparisons between visual rating, a manual, and an automatic Volumetrical MRI method—The Gothenburg MCI study. Journal of Aging Research, 2013, 1–10. https://doi.org/10.1155/2013/198471.

    Article  Google Scholar 

  • Scheltens, P., Barkhof, F., Leys, D., Pruvo, J. P., Nauta, J. J., Vermersch, P., et al. (1993). A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. Journal of the Neurological Sciences, 114(1), 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V. J., Zimmer, C., Hemmer, B., & Mühlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in multiple sclerosis. NeuroImage, 59(4), 3774–3783. https://doi.org/10.1016/j.neuroimage.2011.11.032.

    Article  PubMed  Google Scholar 

  • Shiee, N., Bazin, P.-L., Ozturk, A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2010). A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage, 49(2), 1524–1535. https://doi.org/10.1016/j.neuroimage.2009.09.005.

    Article  PubMed  Google Scholar 

  • de Sitter, A., Steenwijk, M. D., Ruet, A., Versteeg, A., Liu, Y., van Schijndel, R. A., et al. (2017). Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. NeuroImage, 163(Supplement C), 106–114. https://doi.org/10.1016/j.neuroimage.2017.09.011.

    Article  PubMed  Google Scholar 

  • Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062.

    Article  PubMed  Google Scholar 

  • Steenwijk, M. D., Pouwels, P. J. W., Daams, M., van Dalen, J. W., Caan, M. W. A., Richard, E., Barkhof, F., & Vrenken, H. (2013). Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage: Clinical, 3, 462–469. https://doi.org/10.1016/j.nicl.2013.10.003.

    Article  Google Scholar 

  • Wardlaw, J. M., Smith, E. E., Biessels, G. J., Cordonnier, C., Fazekas, F., Frayne, R., Lindley, R. I., O'Brien, J. T., Barkhof, F., Benavente, O. R., Black, S. E., Brayne, C., Breteler, M., Chabriat, H., Decarli, C., de Leeuw, F. E., Doubal, F., Duering, M., Fox, N. C., Greenberg, S., Hachinski, V., Kilimann, I., Mok, V., Oostenbrugge Rv, Pantoni, L., Speck, O., Stephan, B. C., Teipel, S., Viswanathan, A., Werring, D., Chen, C., Smith, C., van Buchem, M., Norrving, B., Gorelick, P. B., Dichgans, M., & STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). (2013). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. The Lancet Neurology, 12(8), 822–838.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Chabriat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, Y., Jouvent, E., Cousyn, L. et al. Validation and Optimization of BIANCA for the Segmentation of Extensive White Matter Hyperintensities. Neuroinform 16, 269–281 (2018). https://doi.org/10.1007/s12021-018-9372-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9372-2

Keywords

Navigation