Skip to main content

Advertisement

Log in

Predict MiRNA-Disease Association with Collaborative Filtering

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The era of human brain science research is dawning. Researchers utilize the various multi-disciplinary knowledge to explore the human brain,such as physiology and bioinformatics. The emerging disease association prediction technology can speed up the study of diseases, so as to better understanding the structure and function of human body. There are increasing evidences that miRNA plays a significant role in nervous system development, adult function, plasticity, and vulnerability to neurological disease states. In this paper ,we proposed the novel improved collaborative filtering-based miRNA-disease association prediction (ICFMDA) approach. Known miRNA-disease associations can be viewed as a bipartite network between diseases and miRNAs. ICFMDA defined significance SIG between pairs of diseases or miRNAs to model the preference on the choices of other entities. The collaborative filtering algorithm is further improved by incorporating similarity matrices to enable the prediction for new miRNA or disease without known associations. Potential miRNA-disease associations are scored with the addition of bidirectional recommendation results with low computational cost. ICFMDA achieved a 0.9076 AUC of ROC curve in global leave-one-out cross validation, which outperformed the state-of-the-art models. ICFMDA is a compact and accurate tool for potential miRNA-disease association prediction. We hope that ICFMDA would be useful in future miRNA and brain researches,and achieve better understanding of the nervous system in molecular level, cellular level, cell change process, and thus can support the research of human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Chan, J.A., Krichevsky, A.M., Kosik, K.S. (2005). Microrna-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 65(14), 6029–6033.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., & Yan, G-Y. (2014). Semi-supervised learning for potential human microrna-disease associations inference. Scientific Reports, 4, 5501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, X., Liu, M-X, Yan, G-Y. (2012). Rwrmda: predicting novel human microrna–disease associations. Molecular BioSystems, 8(10), 2792–2798.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Yan, C.C., Zhang, X., Li, Z., Deng, L., Zhang, Y., Dai, Q. (2015). Rbmmmda: predicting multiple types of disease-microrna associations. Scientific Reports, 5, 13877.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Yan, C.C., Xu, Z., You, Z-H, Huang, Y-A, Yan, G-Y. (2016a). Hgimda: heterogeneous graph inference for mirna-disease association prediction. Oncotarget, 7(40), 65257–65269.

    PubMed  PubMed Central  Google Scholar 

  • Chen, X., Yan, C.C., Zhang, X., You, Z-H, Deng, L., Liu, Y., Zhang, Y., Dai, Q. (2016b). Wbsmda: within and between score for mirna-disease association prediction. Scientific reports, 6.

  • Cogswell, J.P., Ward, J., Taylor, I.A., Waters, M., Shi, Y., Cannon, B., Kelnar, K., Kemppainen, J., Brown, D., Chen, C., et al. (2008). Identification of mirna changes in alzheimer’s disease brain and csf yields putative biomarkers and insights into disease pathways. Journal of Alzheimer’s Disease, 14(1), 27–41.

    Article  PubMed  CAS  Google Scholar 

  • Du, L, Schageman, J.J., Girard, L., Hammond, S.M., Minna, J.D., Gazdar, A.F., Pertsemlidis, A., et al. (2010). Microrna expression distinguishes sclc from nsclc lung tumor cells and suggests a possible pathological relationship between sclcs and nsclcs. Journal of Experimental & Clinical Cancer Research, 29(1), 75.

    Article  CAS  Google Scholar 

  • Hirota, T., Date, Y., Nishibatake, Y., Takane, H., Fukuoka, Y., Taniguchi, Y., Burioka, N., Shimizu, E., Nakamura, H., Otsubo, K., et al. (2012). Dihydropyrimidine dehydrogenase (dpd) expression is negatively regulated by certain micrornas in human lung tissues. Lung Cancer, 77(1), 16–23.

    Article  PubMed  Google Scholar 

  • Kappelmann, M., Kuphal, S., Meister, G., Vardimon, L., Bosserhoff, A.K. (2013). Microrna mir-125b controls melanoma progression by direct regulation of c-jun protein expression. Oncogene, 32(24), 2984–2991.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.C., Feinbaum, R.L., Ambros, V. (1993). The c. elegans heterochronic gene lin-4 encodes small rnas with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Article  PubMed  CAS  Google Scholar 

  • Leidinger, P., Keller, A., Borries, A., Reichrath, J., Rass, K., Jager, S.U., Lenhof, H-P, Meese, E. (2010). High-throughput mirna profiling of human melanoma blood samples. BMC Cancer, 10(1), 262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin, Z., Li, J-W, Wang, Y., Chen, T., Ren, N., Yang, L., Xu, W., He, H., Jiang, Y., Chen, X., et al. (2015). Abnormal mirna-30e expression is associated with breast cancer progression. Clinical Laboratory, 62(1–2), 121–128.

    CAS  Google Scholar 

  • Mehler, M.F., & Mattick, J.S. (2007). Noncoding rnas and rna editing in brain development, functional diversification, and neurological disease. Physiological Reviews, 87(3), 799–823.

    Article  PubMed  CAS  Google Scholar 

  • Meister, G., & Tuschl, T. (2004). Mechanisms of gene silencing by double-stranded rna. Nature, 431(7006), 343–349.

    Article  PubMed  CAS  Google Scholar 

  • Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q. (2008). One-class collaborative filtering. In Eighth IEEE International conference on data mining, 2008. ICDM’08. (pp. 502–511). IEEE.

  • Parisi, C., & Volonte, C. (2013). Commentary:(research highlights:”mirnacles” in brain). CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 12(6), 717–718.

    CAS  Google Scholar 

  • Persengiev, S., Kondova, I., Otting, N., Koeppen, A.H., Bontrop, R.E. (2011). Genome-wide analysis of mirna expression reveals a potential role for mir-144 in brain aging and spinocerebellar ataxia pathogenesis. Neurobiology of Aging, 32(12), 2316–e17.

    Article  PubMed  CAS  Google Scholar 

  • Senanayake, U., Das, S., Vesely, P., Alzoughbi, W., Fröhlich, L.F., Chowdhury, P., Leuschner, I., Hoefler, G., Guertl, B. (2012). mir-192, mir-194, mir-215, mir-200c and mir-141 are downregulated and their common target acvr2b is strongly expressed in renal childhood neoplasms. Carcinogenesis, 33(5), 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  • Shapshak, P. (2013). Molecule of the month: Mirna and multiple sclerosis. Bioinformation, 9(17), 847.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ueno, K., Hirata, H., Shahryari, V., Deng, G., Tanaka, Y., Tabatabai, Z.L., Hinoda, Y., Dahiya, R. (2013). microrna-183 is an oncogene targeting dkk-3 and smad4 in prostate cancer. British Journal of Cancer, 108(8), 1659–1667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volinia, S., Calin, G.A., Liu, C-G, Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A microrna expression signature of human solid tumors defines cancer gene targets. Proceedings of the National academy of Sciences of the United States of America, 103(7), 2257–2261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, D., Wang, J., Lu, M., Song, F., Cui, Q. (2010). Inferring the human microrna functional similarity and functional network based on microrna-associated diseases. Bioinformatics, 26(13), 1644–1650.

    Article  PubMed  CAS  Google Scholar 

  • Xuan, P., Han, K., Guo, M., Guo, Y., Li, J., Ding, J., Liu, Y., Dai, Q., Li, J., Teng, Z., et al. (2013). Prediction of micrornas associated with human diseases based on weighted k most similar neighbors. PloS one, 8(8), e70204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaman, M.S., Shahryari, V., Deng, G., Thamminana, S., Saini, S., Majid, S., Chang, I., Hirata, H., Ueno, K., Yamamura, S., et al. (2012). Up-regulation of microrna-21 correlates with lower kidney cancer survival. PloS One, 7(2), e31060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zambrano, N.R., Lubensky, I.A., Merino, M.J., Marston LW, Walther, M.M. (1999). Histopathology and molecular genetics of renal tumors: toward unification of a classification system. The Journal of urology, 162(4), 1246–1258.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (61525206, 61671196,61327902), Zhejiang Province Nature Science Foundation of China LR17F030006.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingtao Liu or Chenggang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Liu, B., Yu, L. et al. Predict MiRNA-Disease Association with Collaborative Filtering. Neuroinform 16, 363–372 (2018). https://doi.org/10.1007/s12021-018-9386-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9386-9

Keywords

Navigation