Skip to main content

Advertisement

Log in

Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer’s Disease

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by gradual neurodegeneration and loss of brain function, especially for memory during early stages. Regression analysis has been widely applied to AD research to relate clinical and biomarker data such as predicting cognitive outcomes from MRI measures. Recently, multi-task based feature learning (MTFL) methods with sparsity-inducing \( \ell _{2,1} \)-norm have been widely studied to select a discriminative feature subset from MRI features by incorporating inherent correlations among multiple clinical cognitive measures. However, existing MTFL assumes the correlation among all tasks is uniform, and the task relatedness is modeled by encouraging a common subset of features via sparsity-inducing regularizations that neglect the inherent structure of tasks and MRI features. To address this issue, we proposed a fused group lasso regularization to model the underlying structures, involving 1) a graph structure within tasks and 2) a group structure among the image features. To this end, we present a multi-task feature learning framework with a mixed norm of fused group lasso and \( \ell _{2,1} \)-norm to model these more flexible structures. For optimization, we employed the alternating direction method of multipliers (ADMM) to efficiently solve the proposed non-smooth formulation. We evaluated the performance of the proposed method using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) datasets. The experimental results demonstrate that incorporating the two prior structures with fused group lasso norm into the multi-task feature learning can improve prediction performance over several competing methods, with estimated correlations of cognitive functions and identification of cognition-relevant imaging markers that are clinically and biologically meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alzheimer’s Association, & et al. (2016). Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12(4), 459–509.

    Article  Google Scholar 

  • Argyriou, A., Evgeniou, T., Pontil, M. (2008). Convex multi-task feature learning. Machine Learning, 73(3), 243–272.

    Article  Google Scholar 

  • Batsch, N.L., & Mittelman, M.S. (2015). World Alzheimer Report 2012. Overcoming the stigma of dementia. Alzheimer’s Disease International (ADI), p. 5.

  • Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundation and Trends in Machine Learning, 3(1), 1–122.

    Google Scholar 

  • Cai, J.-F., Osher, S., Shen, Z. (2009). Split bregman methods and frame based image restoration. Multiscale modeling & simulation, 8(2), 337–369.

    Article  Google Scholar 

  • Cao, P., Liu, X., Yang, J., Zhao, D., Zaiane, O. (2017). Sparse multi-kernel based multi-task learning for joint prediction of clinical scores and biomarker identification in alzheimer’s disease. In International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 195–202.

  • Caruana, R. (1998). Multitask learning. In Learning to learn. Springer, pp. 95–133.

  • Castellani, R.J., Rolston, R.K., Smith, M.A. (2010). Alzheimer disease. Disease-a-month: DM, 56(9), 484.

    Article  PubMed  Google Scholar 

  • Chen, J., Zhou, J., Ye, J. (2011). Integrating low-rank and group-sparse structures for robust multi-task learning.

  • Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Dale, A.M., & Sereno, M.I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5(2), 162–176.

    Article  CAS  PubMed  Google Scholar 

  • Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

    Article  PubMed  Google Scholar 

  • Evgeniou, T., & learning, M.P. (2004). Regularized multi–task. In Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 109–117.

  • Fischl, B., Liu, A., Dale, A.M. (2001). Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20, 70–80.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe, A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale, A.M. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33, 341–355.

    Article  CAS  PubMed  Google Scholar 

  • Fischl, B., Salat, D.H., van der Kouwe, A.J., Makris, N., Segonne, F., Quinn, B.T., Dale, A.M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23, S69–S84.

    Article  PubMed  Google Scholar 

  • Frisoni, G.B., Fox, N.C., Jack, C.R., Scheltens, P., Thompson, P.M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goncalves, A., Das, P., Chatterjee, S., Sivakumar, V., Zuben, F.J.V., Banerjee, A. (2014). Multi-task sparse structure learning. In In CIKM, pp. 451–460.

  • Jebara, T. (2011). Multitask sparsity via maximum entropy discrimination. Journal of Machine Learning Research, 12(Jan), 75–110.

    Google Scholar 

  • Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In Proceedings of the 26th annual international conference on machine learning. ACM, pp. 457–464.

  • Liu, J., Ji, S., Ye, J. (2009). Multi-task feature learning via \(\ell _{2,1}\)-norm minimization. In Proceedings of the 25th conference on uncertainty in artificial intelligence. AUAI Press, pp. 339–348.

  • Liu, X., Cao, P., Zhao, D., Zaiane, O., et al. (2017). Group guided sparse group lasso multi-task learning for cognitive performance prediction of alzheimer’s disease. In International Conference on Brain Informatics. Springer, pp. 202–212.

  • Liu, X., Goncalves, A.R., Cao, P., Zhao, D., Banerjee, A., et al. (2017). Modeling Alzheimer’s disease cognitive scores using multi-task sparse group lasso. Computerized Medical Imaging and Graphics, 66, 100–114.

    Article  PubMed  Google Scholar 

  • Reuter, M., Rosas, H.D., Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. NeuroImage, 53(4), 1181–1196.

    Article  PubMed  Google Scholar 

  • Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B. (2004). A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22, 1060–1075.

    Article  CAS  PubMed  Google Scholar 

  • Ségonne, F., Pacheco, J., Fischl, B. (2007). Geometrically accurate topology-correction of cortical surfaces using nonseparating loops. IEEE Transactions on Medical Imaging, 26(4), 518–529.

    Article  PubMed  Google Scholar 

  • Li, S., Saykin, A.J., Risacher, S.L., Kim, S., Fang, S., Rao, B.D., Li, T., Yan, J., Zhang, Z., Wan, J. (2012). Sparse bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in alzheimer.

  • Sled, J.G., Zijdenbos, A.P., Evans, A.C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Stonnington, C.M., Chu, C., Klöppel, S., Jack, C.R., Ashburner, J., Frackowiak, R.S.J. (2010). Alzheimer disease neuroimaging initiative predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. NeuroImage, 51(4), 1405–1413.

    Article  PubMed  Google Scholar 

  • Hoesen, G.W.v., Hyman, B.T., Damasio, A.R. (1991). Entorhinal cortex pathology in Alzheimer’s disease. Hippocampus, 1(1), 1–8.

    Article  PubMed  Google Scholar 

  • Visser, P.J., Verhey, F.R.J., Hofman, P.A.M., Scheltens, P., Jolles, J. (2002). Medial temporal lobe atrophy predicts Alzheimer’s disease in patients with minor cognitive impairment. Journal of Neurology Neurosurgery & Psychiatry, 72(4), 491–497.

    CAS  Google Scholar 

  • Wan, J., Zhang, Z., Rao, B.D., Fang, S., Yan, J., Saykin, A.J., Li, S. (2014). Identifying the neuroanatomical basis of cognitive impairment in Alzheimer’s disease by correlation-and nonlinearity-aware sparse Bayesian learning. IEEE transactions on medical imaging, 33(7), 1475–1487.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan, J., Zhang, Z., Yan, J., Li, T., Rao, B.D., Fang, S., Kim, S., Risacher, S.L., Saykin, A.J., Li, S. (2012). Sparse Bayesian multi-task learning for predicting cognitive outcomes from neuroimaging measures in Alzheimer’s disease. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 940–947.

  • Wang, H., Nie, F., Huang, H., Risacher, S., Ding, C., Saykin, A.J., Li, S. (2011). ADNI Sparse Multi-task regression and feature selection to identify brain imaging predictors for memory performance. In International Conference on Computer Vision, pp. 6–13.

  • Wang, H., Nie, F., Huang, H., Yan, J., Kim, S., Risacher, S., Saykin, A., Li, S. (2012). High-order multi-task feature learning to identify longitudinal phenotypic markers for Alzheimer’s disease progression prediction. In Advances in Neural Information Processing Systems, pp. 1277–1285.

  • Weiner, M.W., Aisen, P.S., Jack, C.R. Jr, Jagust, W.J., Trojanowski, J.Q., Shaw, L., Saykin, A.J., Morris, J.C., Cairns, N., Beckett, L.A., Toga, A., Green, R., Walter, S., Soares, H., Snyder, P., Siemers, E., Potter, W., Cole, P.E., Schmidt, M. (2010). The Alzheimer’s disease neuroimaging initiative: progress report and future plans. Alzheimer’s & Dementia, 6, 202–211.

    Article  Google Scholar 

  • Xu, L., Wu, X., Li, R., Chen, K., Long, Z., Zhang, J., Guo, X., Yao, L. (2016). Prediction of progressive mild cognitive impairment by multi-modal neuroimaging biomarkers. Journal of Alzheimer’s Disease, 51 (4), 1045–1056.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Y., Liao, X., Carin, L., Krishnapuram, B. (2007). Multi-task learning for classification with dirichlet process priors. Journal of Machine Learning Research, 8(Jan), 35–63.

    Google Scholar 

  • Yan, J., Huang, H., Risacher, S.L., Kim, S., Inlow, M., Moore, J.H., Saykin, A.J., Shen, L. (2013). Network-guided sparse learning for predicting cognitive outcomes from MRI measures. In International Workshop on Multimodal Brain Image Analysis. Springer, pp. 202–210.

  • Yan, J., Li, T., Wang, H., Huang, H., Wan, J., Nho, K., Kim, S., Risacher, S.L., Saykin, A.J., Shen, L., et al. (2015). Cortical surface biomarkers for predicting cognitive outcomes using group \(\ell _{2,1}\) norm. Neurobiology of aging, 36, S185–S193.

    Article  PubMed  Google Scholar 

  • Ye, G.-B., & Xie, X. (2011). Split bregman method for large scale fused lasso. Computational Statistics & Data Analysis, 55(4), 1552–1569.

    Article  Google Scholar 

  • Yu, K., Tresp, V., Schwaighofer, A. (2005). Learning gaussian processes from multiple tasks. In Proceedings of the 22nd international conference on Machine learning. ACM, pp. 1012–1019.

  • Yuan, L., Liu, J., Ye, J. (2013). Efficient methods for overlapping group lasso. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(9), 2104–2116.

    Article  PubMed  Google Scholar 

  • Zhang, D., Shen, D., Alzheimer’s Disease Neuroimaging Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59(2), 895–907.

    Article  PubMed  Google Scholar 

  • Zhang, Y., & Yeung, D.-Y. (2012a). A convex formulation for learning task relationships in multi-task learning. In Conference on Uncertainty in Artificial Intelligence (UAI2010) 2010, pp. 733–742.

  • Zhang, Y., & Yeung, D.-Y. (2012b). A convex formulation for learning task relationships in multi-task learning. arXiv:1203.3536.

  • Zhou, J., Chen, J., Ye, J. (2011). Clustered multi-task learning via alternating structure optimization. In Advances in neural information processing systems, pp. 702–710.

  • Zhou, J., Liu, J., Narayan, V.A., Ye, J., Alzheimer’s Disease Neuroimaging Initiative. (2013). Modeling disease progression via multi-task learning. NeuroImage, 78, 233–248.

    Article  PubMed  Google Scholar 

  • Zhou, J.Y. Multi-task learning in crisis event classification. Technical report, Tech. Rep., http://www.public.asu.edu/jzhou29.

  • Zhu, X., Suk, H.-I., Lee, S.-W., Shen, D. (2016). Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Transactions on Biomedical Engineering, 63(3), 607–618.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation for Distinguished Young Scholars of China under Grant (No.71325002 and No.61225012), the National Natural Science Foundation of China (No.61502091), the Fundamental Research Funds for the Central Universities (No.N161604001 and No.N150408001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Cao, P., Wang, J. et al. Fused Group Lasso Regularized Multi-Task Feature Learning and Its Application to the Cognitive Performance Prediction of Alzheimer’s Disease. Neuroinform 17, 271–294 (2019). https://doi.org/10.1007/s12021-018-9398-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-018-9398-5

Keywords

Navigation