Abstract
Little is known about the high-order interactions among brain regions measured by the similarity of higher-order features (other than the raw blood-oxygen-level-dependent signals) which can characterize higher-level brain functional connectivity (FC). Previously, we proposed FC topographical profile-based high-order FC (HOFC) and found that this metric could provide supplementary information to traditional FC for early Alzheimer’s disease (AD) detection. However, whether such findings apply to network-level brain functional integration is unknown. In this paper, we propose an extended HOFC method, termed inter-network high-order FC (IN-HOFC), as a useful complement to the traditional inter-network FC methods, for characterizing more complex organizations among the large-scale brain networks. In the IN-HOFC, both network definition and inter-network FC are defined in a high-order manner. To test whether IN-HOFC is more sensitive to cognition decline due to brain diseases than traditional inter-network FC, 77 mild cognitive impairments (MCIs) and 89 controls are compared among the conventional methods and our IN-HOFC. The result shows that IN-HOFCs among three temporal lobe-related high-order networks are dampened in MCIs. The impairment of IN-HOFC is especially found between the anterior and posterior medial temporal lobe and could be a potential MCI biomarker at the network level. The competing network-level low-order FC methods, however, either revealing less or failing to detect any group difference. This work demonstrates the biological meaning and potential diagnostic value of the IN-HOFC in clinical neuroscience studies.




Similar content being viewed by others
References
Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J., Clark, V. P., Feldstein Ewing, S. W., Filbey, F., Ford, C. C., Hutchison, K., Jung, R. E., Kiehl, K. A., Kodituwakku, P., Komesu, Y. M., Mayer, A. R., Pearlson, G. D., Phillips, J. P., Sadek, J. R., Stevens, M., Teuscher, U., Thoma, R. J., & Calhoun, V. D. (2011). A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci, 5, 2.
Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., Zhang, X., & Qian, Y. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: A combined structural and resting-state functional MRI study. Neurosci Lett, 438, 111–115.
Barkhof, F., Haller, S., & Rombouts, S. A. (2014). Resting-state functional MR imaging: A new window to the brain. Radiology, 272, 29–49.
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond Ser B Biol Sci, 360, 1001–1013.
Bellec, P., Rosa-Neto, P., Lyttelton, O. C., Benali, H., & Evans, A. C. (2010). Multi-level bootstrap analysis of stable clusters in resting-state fMRI. Neuroimage, 51, 1126–1139.
Bijsterbosch, J., Smith, S., Forster, S., John, O. P., & Bishop, S. J. (2014). Resting state correlates of subdimensions of anxious affect. J Cogn Neurosci, 26, 914–926.
Bonner, M. F., & Price, A. R. (2013). Where is the anterior temporal lobe and what does it do? J Neurosci, 33, 4213–4215.
Brier, M. R., Thomas, J. B., Snyder, A. Z., Benzinger, T. L., Zhang, D., Raichle, M. E., Holtzman, D. M., Morris, J. C., & Ances, B. M. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer's disease progression. J Neurosci, 32, 8890–8899.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10, 186–198.
Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Hum Brain Mapp, 14, 140–151.
Cohen, A. L., Fair, D. A., Dosenbach, N. U., Miezin, F. M., Dierker, D., Van Essen, D. C., Schlaggar, B. L., & Petersen, S. E. (2008). Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage, 41, 45–57.
Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magn Reson Imaging, 20, 305–317.
Craddock, R. C., James, G. A., Holtzheimer, P. E., 3rd, Hu, X. P., & Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum Brain Mapp, 33, 1914–1928.
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980.
Di Paola, M., Macaluso, E., Carlesimo, G. A., Tomaiuolo, F., Worsley, K. J., Fadda, L., & Caltagirone, C. (2007). Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study. Journal of Neurology, 254, 774–781.
Dosenbach, N. U., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D., Church, J. A., Nelson, S. M., Wig, G. S., Vogel, A. C., Lessov-Schlaggar, C. N., Barnes, K. A., Dubis, J. W., Feczko, E., Coalson, R. S., Pruett, J. R., Jr., Barch, D. M., Petersen, S. E., & Schlaggar, B. L. (2010). Prediction of individual brain maturity using fMRI. Science, 329, 1358–1361.
Eickhoff, S. B., Thirion, B., Varoquaux, G., & Bzdok, D. (2015). Connectivity-based parcellation: Critique and implications. Hum Brain Mapp, 36, 4771–4792.
Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., Matthews, P. M., Beckmann, C. F., & Mackay, C. E. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A, 106, 7209–7214.
Frisoni, G. B., & Coleman, P. D. (2011). Mild cognitive impairment: Instructions for use at neurobiology of aging. Neurobiology of aging. Neurobiology of Aging, 32, 761–762.
Gour, N., Ranjeva, J. P., Ceccaldi, M., Confort-Gouny, S., Barbeau, E., Soulier, E., Guye, M., Didic, M., & Felician, O. (2011). Basal functional connectivity within the anterior temporal network is associated with performance on declarative memory tasks. Neuroimage, 58, 687–697.
Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol, 21, 424–430.
Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: Evidence from functional MRI. Proc Natl Acad Sci U S A, 101, 4637–4642.
Han, C. E., Yoo, S. W., Seo, S. W., Na, D. L., & Seong, J. K. (2013). Cluster-based statistics for brain connectivity in correlation with behavioral measures. PLoS One, 8, e72332.
He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's disease. J Neurosci, 28, 4756–4766.
Hirose, S., Watanabe, T., Wada, H., Imai, Y., Machida, T., Shirouzu, I., Miyashita, Y., & Konishi, S. (2013). Functional relevance of micromodules in the human association cortex delineated with high-resolution FMRI. Cereb Cortex, 23, 2863–2871.
Ing, A., & Schwarzbauer, C. (2014). Cluster size statistic and cluster mass statistic: Two novel methods for identifying changes in functional connectivity between groups or conditions. PLoS One, 9, e98697.
Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage, 39, 1666–1681.
Jia, X., Zhang, H., Adeli, E., & Shen, D. (2017). 2017. Consciousness level and recovery outcome prediction using high-order brain functional connectivity network. Connectomics Neuroimaging, 10511, 17–24.
Karunanayaka, P., Eslinger, P. J., Wang, J. L., Weitekamp, C. W., Molitoris, S., Gates, K. M., Molenaar, P. C., & Yang, Q. X. (2014). Networks involved in olfaction and their dynamics using independent component analysis and unified structural equation modeling. Hum Brain Mapp, 35, 2055–2072.
Ketchen, D. J., & Shook, C. L. (1996). The application of cluster analysis in strategic management research: An analysis and critique. Strateg Manag J, 17, 441–458.
Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J., Haapea, M., Veijola, J., Moilanen, I., Isohanni, M., Zang, Y. F., & Tervonen, O. (2009). Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp, 30, 3865–3886.
Kong, Y., Eippert, F., Beckmann, C. F., Andersson, J., Finsterbusch, J., Buchel, C., Tracey, I., & Brooks, J. C. (2014). Intrinsically organized resting state networks in the human spinal cord. Proc Natl Acad Sci U S A, 111, 18067–18072.
Lee, M. H., Hacker, C. D., Snyder, A. Z., Corbetta, M., Zhang, D., Leuthardt, E. C., & Shimony, J. S. (2012). Clustering of resting state networks. PLoS One, 7, e40370.
Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., & Zuo, X. N. (2015). Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: A meta-analysis of 75 fMRI studies. Hum Brain Mapp, 36, 1217–1232.
Liang, P., Zhang, H., Xu, Y., Jia, W., Zang, Y., & Li, K. (2015). Disruption of cortical integration during midazolam-induced light sedation. Hum Brain Mapp, 36, 4247–4261.
Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends Cogn Sci, 15, 483–506.
Meunier, D., Achard, S., Morcom, A., & Bullmore, E. (2009). Age-related changes in modular organization of human brain functional networks. Neuroimage, 44, 715–723.
Mezer, A., Yovel, Y., Pasternak, O., Gorfine, T., & Assaf, Y. (2009). Cluster analysis of resting-state fMRI time series. Neuroimage, 45, 1117–1125.
Misic, B., Goni, J., Betzel, R. F., Sporns, O., & McIntosh, A. R. (2014). A network convergence zone in the hippocampus. PLoS Comput Biol, 10, e1003982.
Misic, B., Betzel, R. F., Nematzadeh, A., Goni, J., Griffa, A., Hagmann, P., Flammini, A., Ahn, Y. Y., & Sporns, O. (2015). Cooperative and competitive spreading dynamics on the human connectome. Neuron, 86, 1518–1529.
Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M. E., Velanova, K., Donaldson, D. I., Phillips, J. S., Schlaggar, B. L., & Petersen, S. E. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron, 67, 156–170.
Newman, M. E. (2006). Modularity and community structure in networks. Proc Natl Acad Sci U S A, 103, 8577–8582.
Nickl-Jockschat, T., Kleiman, A., Schulz, J. B., Schneider, F., Laird, A. R., Fox, P. T., Eickhoff, S. B., & Reetz, K. (2012). Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: A meta-analysis. Brain Struct Funct, 217, 115–125.
Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Arch Neurol, 58, 1985–1992.
Putcha, D., Ross, R. S., Cronin-Golomb, A., Janes, A. C., & Stern, C. E. (2015). Altered intrinsic functional coupling between core neurocognitive networks in Parkinson's disease. Neuroimage Clin, 7, 449–455.
Qiao, L., Zhang, H., Kim, M., Teng, S., Zhang, L., & Shen, D. (2016). Estimating functional brain networks by incorporating a modularity prior. Neuroimage, 141, 399–407.
Richiardi, J., Monsch, A. U., Haas, T., Barkhof, F., Van de Ville, D., Radu, E. W., Kressig, R. W., & Haller, S. (2015). Altered cerebrovascular reactivity velocity in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging, 36, 33–41.
Ryan, L., Lin, C. Y., Ketcham, K., & Nadel, L. (2010). The role of medial temporal lobe in retrieving spatial and nonspatial relations from episodic and semantic memory. Hippocampus, 20, 11–18.
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci, 27, 2349–2356.
Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., Nichols, T. E., Robinson, E. C., Salimi-Khorshidi, G., Woolrich, M. W., Barch, D. M., Ugurbil, K., & Van Essen, D. C. (2013). Functional connectomics from resting-state fMRI. Trends Cogn Sci, 17, 666–682.
Sporns, O., & Betzel, R. F. (2016). Modular brain networks. Annu Rev Psychol, 67, 613–640.
Stam, C. J., van Straaten, E. C., Van Dellen, E., Tewarie, P., Gong, G., Hillebrand, A., Meier, J., & Van Mieghem, P. (2016). The relation between structural and functional connectivity patterns in complex brain networks. Int J Psychophysiol, 103, 149–160.
Stevens, M. C., Pearlson, G. D., & Calhoun, V. D. (2009). Changes in the interaction of resting-state neural networks from adolescence to adulthood. Hum Brain Mapp, 30, 2356–2366.
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer's disease. PLoS Comput Biol, 4, e1000100.
Touroutoglou, A., Andreano, J. M., Barrett, L. F., & Dickerson, B. C. (2015). Brain network connectivity-behavioral relationships exhibit trait-like properties: Evidence from hippocampal connectivity and memory. Hippocampus, 25, 1591–1598.
Trinkler, I., King, J. A., Doeller, C. F., Rugg, M. D., & Burgess, N. (2009). Neural bases of autobiographical support for episodic recollection of faces. Hippocampus, 19, 718–730.
Tromp, D., Dufour, A., Lithfous, S., Pebayle, T., & Despres, O. (2015). Episodic memory in normal aging and Alzheimer disease: Insights from imaging and behavioral studies. Ageing Res Rev, 24, 232–262.
van Eijndhoven, P., van Wingen, G., Fernandez, G., Rijpkema, M., Verkes, R. J., Buitelaar, J., & Tendolkar, I. (2011). Amygdala responsivity related to memory of emotionally neutral stimuli constitutes a trait factor for depression. Neuroimage, 54, 1677–1684.
Varoquaux, G., & Craddock, R. C. (2013). Learning and comparing functional connectomes across subjects. Neuroimage, 80, 405–415.
Varoquaux, G., Sadaghiani, S., Pinel, P., Kleinschmidt, A., Poline, J. B., & Thirion, B. (2010). A group model for stable multi-subject ICA on fMRI datasets. Neuroimage, 51, 288–299.
Wang, D., Qin, W., Liu, Y., Zhang, Y., Jiang, T., & Yu, C. (2014). Altered resting-state network connectivity in congenital blind. Hum Brain Mapp, 35, 2573–2581.
Wang, S. F., Ritchey, M., Libby, L. A., & Ranganath, C. (2016). Functional connectivity based parcellation of the human medial temporal lobe. Neurobiology of Learning and Memory, 134(Pt A), 123–134.
Wig, G. S., Laumann, T. O., & Petersen, S. E. (2014). An approach for parcellating human cortical areas using resting-state correlations. Neuroimage, 93(Pt 2), 276–291.
Yang, S. Q., Xu, Z. P., Xiong, Y., Zhan, Y. F., Guo, L. Y., Zhang, S., Jiang, R. F., Yao, Y. H., Qin, Y. Y., Wang, J. Z., Liu, Y., & Zhu, W. Z. (2016). Altered Intranetwork and internetwork functional connectivity in type 2 diabetes mellitus with and without cognitive impairment. Sci Rep, 6, 32980.
Yao, Z., Zhang, Y., Lin, L., Zhou, Y., Xu, C., & Jiang, T. (2010). Abnormal cortical networks in mild cognitive impairment and Alzheimer's disease. PLoS Comput Biol, 6, e1001006.
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol, 106, 1125–1165.
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. Neuroimage, 53, 1197–1207.
Zhang, D., & Raichle, M. E. (2010). Disease and the brain's dark energy. Nat Rev Neurol, 6, 15–28.
Zhang, H., Zuo, X. N., Ma, S. Y., Zang, Y. F., Milham, M. P., & Zhu, C. Z. (2010). Subject order-independent group ICA (SOI-GICA) for functional MRI data analysis. Neuroimage, 51, 1414–1424.
Zhang, H., Chen, X., Shi, F., Li, G., Kim, M., Giannakopoulos, P., Haller, S., & Shen, D. (2016a). Topographical information-based high-order functional connectivity and its application in abnormality detection for mild cognitive impairment. J Alzheimers Dis, 54, 1095–1112.
Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., Becker, B., Liu, Y., Kendrick, K. M., Lu, G., & Feng, J. (2016b). Neural, electrophysiological and anatomical basis of brain-network variability and its characteristic changes in mental disorders. Brain, 139, 2307–2321.
Zhang, H., Chen, X., Zhang, Y., & Shen, D. (2017a). Test-retest reliability of "high-order" functional connectivity in young healthy adults. Front Neurosci, 11, 439.
Zhang, Y., Zhang, H., Chen, X., Lee, S. W., & Shen, D. (2017b). Hybrid high-order functional connectivity networks using resting-state functional MRI for mild cognitive impairment diagnosis. Sci Rep, 7, 6530.
Zhang, Y., Zhang, H., Chen, X., & Shen, D. (2017c). Constructing multi-frequency high-order functional connectivity network for diagnosis of mild cognitive impairment. Connectomics Neuroimaging, 2017(10511), 9–16.
Zhao, F., Zhang, H., Rekik, I., An, Z., & Shen, D. (2018). Diagnosis of autism Spectrum disorders using multi-level high-order functional networks derived from resting-state functional MRI. Front Hum Neurosci, 12, 184.
Zhu, D., Li, K., Terry, D. P., Puente, A. N., Wang, L., Shen, D., Miller, L. S., & Liu, T. (2014). Connectome-scale assessments of structural and functional connectivity in MCI. Hum Brain Mapp, 35, 2911–2923.
Acknowledgments
This work is supported in part by NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG049371 and AG042599). We have no conflict of interest to declare.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, H., Giannakopoulos, P., Haller, S. et al. Inter-Network High-Order Functional Connectivity (IN-HOFC) and its Alteration in Patients with Mild Cognitive Impairment. Neuroinform 17, 547–561 (2019). https://doi.org/10.1007/s12021-018-9413-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-018-9413-x