Abstract
In the last decade, neurosciences have had an increasing interest in resting state functional magnetic resonance imaging (rs-fMRI) as a result of its advantages, such as high spatial resolution, compared to other brain exploration techniques. To improve the technique, the elimination of artifacts through Independent Components Analysis (ICA) has been proposed, as this can separate neural signal and noise, opening possibilities for automatic classification. The main classification techniques have focused on processes based on typical machine learning. However, there are currently more robust approaches such as convolutional neural networks, which can deal with complex problems directly from the data without feature selection and even with data that does not have a simple interpretation, being limited by the amount of data necessary for training and its high computational cost. This research focused on studying four methods of volume reduction mitigating the computational cost for the training of 3 models based on convolutional neural networks. One of the reduction techniques is a novel approach that we call Reduction by Consecutive Binary Patterns (RCBP), which was shown to preserve the spatial features of the independent components. In addition, the RCBP showed networks in components associated with neuronal activity more clearly. The networks achieved accuracy above 98 % in classification, and one network was even found to be over 99 % accurate, outperforming most machine learning-based classification algorithms.













Similar content being viewed by others
References
Anwar, S. M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., & Khan, M. K. (2018). Medical image analysis using convolutional neural networks: a review. Journal of Medical Systems. https://doi.org/10.1007/s10916-018-1088-1.
Armony, J. L., Martínez, T., & Hernández, D. (2012). Resonancia Magnética Funcional (RMf): Principios y aplicaciones en Neuropsicología y Neurociencias Cognitivas. Revista Neuropsicología Latinoamericana, 4(2), 36–50. https://doi.org/10.5579/rnl.2012.010.
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B:Biological Sciences, 360(1457), 1001–1013. https://doi.org/10.1098/rstb.2005.1634.
Chen, K., Azeez, A., Chen, D. Y., & Biswal, B. B. (2020). Resting-state functional connectivity: signal origins and analytic methods. Neuroimaging Clinics of North America, 15–23. https://doi.org/10.1016/j.nic.2019.09.012
Elhassouny, A., & Smarandache, F. (2019). Trends in deep convolutional neural Networks architectures: A review. Proceedings of 2019 International Conference of Computer Science and Renewable Energies, ICCSRE 2019, (1), 1–8. https://doi.org/10.1109/ICCSRE.2019.8807741
Franciotti, R., Delli Pizzi, S., Russo, M., Carrarini, C., Carrozzino, D., Perfetti, B., et al., (2019). Somatic symptoms disorders in Parkinson’s disease are related to default mode and salience network dysfunction. NeuroImage: Clinical, 23(April). https://doi.org/10.1016/j.nicl.2019.101932
Fushiki, T. (2011). Estimation of prediction error by using K-fold cross-validation. Statistics and Computing, 21(2), 137–146. https://doi.org/10.1007/s11222-009-9153-8.
Giusti, A., Cireşan, D. C., Masci, J., Gambardella, L. M., & Schmidhuber, J. (2013). Fast image scanning with deep max-pooling convolutional neural networks. 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings, 4034–4038. https://doi.org/10.1109/ICIP.2013.6738831
Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al., (2013). The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage, 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127.
Griffanti, L., Douaud, G., Bijsterbosch, J., Evangelisti, S., Alfaro-Almagro, F., Glasser, M. F., et al., (2017). Hand classification of fMRI ICA noise components. NeuroImage, 154(December 2016), 188–205. https://doi.org/10.1016/j.neuroimage.2016.12.036
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27–48. https://doi.org/10.1016/j.neucom.2015.09.116.
Halavi, M., & Ascoli, G. A. (2009). Neuroinformatics. Encyclopedia of Neuroscience. https://doi.org/10.1016/B978-008045046-9.00872-X.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (Vol. 2015 Inter, pp. 1026–1034). https://doi.org/10.1109/ICCV.2015.123
Hernandez, W., & Mendez, A. (2018). Application of principal component analysis to image compression. In Statistics - Growing Data Sets and Growing Demand for Statistics (Türkmen Gö.). Open access peer-reviewed chapter. https://doi.org/10.5772/intechopen.75007.
Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-stage architecture for object recognition? In 2009 IEEE 12th International Conference on Computer Vision (pp. 2146–2153). https://doi.org/10.1109/ICCV.2009.5459469
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015.
Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., & Sabuncu, M. R. (2019). Machine learning in resting-state fMRI analysis. Magnetic Resonance Imaging. Elsevier. https://doi.org/10.1016/j.mri.2019.05.031
Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings.
Kropotov, J. D. (2016). Functional magnetic resonance imaging. In Functional Neuromarkers for Psychiatry (pp. 17–25). https://doi.org/10.1016/B978-0-12-410513-3.00003-6.
Lang, S., Duncan, N., & Northoff, G. (2014). Resting-state functional magnetic resonance imaging: Review of neurosurgical applications. Neurosurgery. https://doi.org/10.1227/NEU.0000000000000307.
LeCun, Y., Cortes, C., Bottou, L., & Jackel, L. (1995). Comparison of learning algorithms for handwriting digit recognition. International Conference on Artificial Neural Networks, 53–60.
Lin, M., Chen, Q., & Yan, S. (2014). Network in network. In 2nd International Conference on Learning Representations, ICLR 2014 - Conference Track Proceedings.
Lindquist, M. A. (2008). The statistical analysis of fMRI data. Statistical Science, 23(4), 439–464. https://doi.org/10.1214/09-STS282.
Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., & Alsaadi, F. E. (2017). A survey of deep neural network architectures and their applications. Neurocomputing, 234(November 2016), 11–26. https://doi.org/10.1016/j.neucom.2016.12.038
Liu, X., Deng, Z., & Yang, Y. (2019). Recent progress in semantic image segmentation. Artificial Intelligence Review, 52, 1089–1106. https://doi.org/10.1007/s10462-018-9641-3.
Lundervold, A. S., & Lundervold, A. (2019). An overview of deep learning in medical imaging focusing on MRI. Zeitschrift fur Medizinische Physik. Elsevier B.V. https://doi.org/10.1016/j.zemedi.2018.11.002.
Mao, Z., Su, Y., Xu, G., Wang, X., Huang, Y., Yue, W., et al., (2019). Spatio-temporal deep learning method for ADHD fMRI classification. Information Sciences, 499, 1–11. https://doi.org/10.1016/j.ins.2019.05.043.
Margulies, D. S., Böttger, J., Long, X., Lv, Y., Kelly, C., Schäfer, A., et al., (2010). Resting developments: A review of fMRI post-processing methodologies for spontaneous brain activity. Magnetic Resonance Materials in Physics, Biology and Medicine. https://doi.org/10.1007/s10334-010-0228-5.
Mohan, J., Krishnaveni, V., & Guo, Y. (2014). A survey on the magnetic resonance image denoising methods. Biomedical Signal Processing and Control. Elsevier Ltd. https://doi.org/10.1016/j.bspc.2013.10.007.
Mostapha, M., & Styner, M. (2019). Role of deep learning in infant brain MRI analysis. Magnetic Resonance Imaging. Elsevier. https://doi.org/10.1016/j.mri.2019.06.009.
Nwankpa, C. E., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions: Comparison of trends in practice and research for deep learning. arXiv.
Pearlson, G. D. (2017). Applications of Resting State Functional MR Imaging to Neuropsychiatric Diseases. Neuroimaging Clinics of North America. Elsevier Inc. https://doi.org/10.1016/j.nic.2017.06.005.
Pietikäinen, M., & Zhao, G. (2015). Two decades of local binary patterns: A survey. In Advances in Independent Component Analysis and Learning Machines (Academic P., pp. 175–210). https://doi.org/10.1016/B978-0-12-802806-3.00009-9.
Project, T. H. C. (2009). HCP Young Adult - Connectome - Publications. https://www.humanconnectome.org/study/hcp-young-adult. Accessed 17 Mar 2020.
Pruim, R. H. R., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage, 112, 278–287. https://doi.org/10.1016/j.neuroimage.2015.02.063.
Pruim, R. H. R., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277. https://doi.org/10.1016/j.neuroimage.2015.02.064.
Qian, W., Fischer, C. E., Churchill, N. W., Kumar, S., Rajji, T., & Schweizer, T. A. (2019). Delusions in Alzheimer disease are associated with decreased default mode network functional connectivity. American Journal of Geriatric Psychiatry, 27(10), 1060–1068. https://doi.org/10.1016/j.jagp.2019.03.020.
Raichle, M. E. (2015). The Brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030.
Ranzato, M., Huang, F. J., Boureau, Y. L., & LeCun, Y. (2007). Unsupervised learning of invariant feature hierarchies with applications to object recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 0–7. https://doi.org/10.1109/CVPR.2007.383157
Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G. Z. (2017). Deep learning for health informatics. IEEE Journal of Biomedical and Health Informatics, 21(1), 4–21. https://doi.org/10.1109/JBHI.2016.2636665.
Rawat, W., & Wang, Z. (2017). Deep convolutional neural networks for image classification: a comprehensive review. Neural Computation, 29(9), 2352–2449. https://doi.org/10.1162/NECO_a_00990.
Rossini, P. M., Di Iorio, R., Bentivoglio, M., Bertini, G., Ferreri, F., Gerloff, C., et al., (2019). Methods for analysis of brain connectivity: An IFCN-sponsored review. Clinical Neurophysiology. International Federation of Clinical Neurophysiology. https://doi.org/10.1016/j.clinph.2019.06.006
Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90, 449–468. https://doi.org/10.1016/j.neuroimage.2013.11.046.
Schmitt, A., Upadhyay, N., Martin, J. A., Rojas, S., Strüder, H. K., & Boecker, H. (2019). Modulation of distinct intrinsic resting state brain networks by acute exercise bouts of differing intensity. Brain Plasticity, 5(1), 39–55. https://doi.org/10.3233/bpl-190081.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E. J., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208–219. https://doi.org/10.1016/j.neuroimage.2004.07.051.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929–1958.
Suzuki, S., & Be, K. A. (1985). Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics and Image Processing, 30(1), 32–46. https://doi.org/10.1016/0734-189X(85)90016-7.
Wald, L. L. (2019). Ultimate MRI. Journal of Magnetic Resonance, 306, 139–144. https://doi.org/10.1016/j.jmr.2019.07.016.
Wei, L. (2018). Multi-hot Sparse Categorical Cross-entropy - MXNet - Apache Software Foundation. Apache MXNet. https://cwiki.apache.org/confluence/display/MXNET/Multi-hot+Sparse+Categorical+Cross-entropy. Accessed 22 Nov 2020.
Whitehall Imaging Oxford — Department of Psychiatry. (n.d.). https://www.psych.ox.ac.uk/research/neurobiology-of-ageing/research-projects-1/whitehall-oxford. Accessed 17 Mar 2020.
Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., & Smith, S. M. (2009). Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1), 173–186. https://doi.org/10.1016/j.neuroimage.2008.10.055.
Yang, K., & Rajapakse, J. C. (2003). Denoising of functional MRI using ICA. In International Symposium on Image and Signal Processing and Analysis, ISPA (Vol. 1, pp. 561–566). https://doi.org/10.1109/ISPA.2003.1296959
Acknowledgements
This work was supported by Departamento Administrativo de Ciencia, Tecnología e Innovación (COLCIENCIAS) for the ‘Identificación de Biomarcadores Preclínicos en Enfermedad de Alzheimer a través de un Seguimiento Longitudinal de la Actividad Eléctrica Cerebral en Poblaciones con Riesgo Genético’ [project, code 111577757635]; and the Vicerrectoría de investigación de la Universidad de Antioquia.
Author information
Authors and Affiliations
Contributions
ServioLeonel Mera Jiménez: Term, Conceptualization, Methodology, Software,Formal analysis, Investigation, Resources, Data Curation, Writing – OriginalDraft, Visualization. John Fredy Ochoa Gómez: Writing - Review &Editing, Supervision, Project administration, Funding acquisition.
Corresponding author
Ethics declarations
Declarationof interests
The authors declare that they have no known competingfinancial interests or personal relationships that could have appeared toinfluence the work reported in this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mera Jiménez, L., Ochoa Gómez, J.F. Volume Reduction Techniques for the Classification of Independent Components of rs-fMRI Data: a Study with Convolutional Neural Networks. Neuroinform 20, 73–90 (2022). https://doi.org/10.1007/s12021-021-09524-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12021-021-09524-9