Abstract
Sulci are a fundamental part of brain morphology, closely linked to brain function, cognition, and behavior. Tertiary sulci, characterized as the shallowest and smallest subtype, pose a challenging task for detection. The diagonal sulcus (ds), located in a crucial area in language processing, has a prevalence between 50% and 60%. Automatic detection of the ds is an unexplored field: while some sulci segmenters include the ds, their accuracy is usually low. In this work, we present a deep learning based model for ds detection using a fine-tuning approach with limited training labeled data. A convolutional autoencoder was employed to learn specific features related to brain morphology with unlabeled data through self-supervised learning. Subsequently, the pre-trained network was fine-tuned to detect the ds using a less extensive labeled dataset. We achieved a mean F1-score of 0.7176 (SD=0.0736) for the test set and a F1-score of 0.72 for a second held-out set, surpassing the results of a standard software and other alternative deep learning models. We conducted an interpretability analysis of the results using occlusion maps and observed that the models focused on adjacent sulci to the ds for prediction, consistent with the approach taken by experts in manual annotation. We also analyzed the challenges of manual labeling by conducting a thorough examination of interrater agreement on a small dataset and its relationship with our model’s performance. Finally, we applied our method on a population analysis and reported the prevalence of ds in a case study.











Data Availability
Data used in this article comprises MRI images taken from various public datasets and an in-house dataset. The IXI dataset is available at http://braindevelopment.org/ixi-dataset, the ADNI dataset is available at http://adni.loni.usc.edu/, and the OASIS dataset is available at https://www.oasisbrains.org/. The private data (HEC-HR dataset) used in this study is not publicly available to protect patient privacy.
Code Availability
Code is available on GitHub at https://github.com/hkulsgaard/sulcus.
References
Akula, S. K., Exposito-Alonso, D., & Walsh, C. A. (2023). Shaping the brain: The emergence of cortical structure andfolding. Developmental Cell, 58(24), 2836–2849.
Amiez, C., & Petrides, M. (2018). Functional rostro-caudal gradient in the human posterior lateral frontal cortex. Brain Structure and Function, 223(3), 1487–1499.
Borne, L., Rivière, D., Mancip, M., & Mangin, J.-F. (2020). Automatic labeling of cortical sulci using patch-or cnn-based segmentation techniques combined with bottom-up geometric constraints. Medical Image Analysis, 62, 101651.
Chen, S., Ma, K., & Zheng, Y. (2019). Med3d: Transfer learning for 3d medical image analysis. arXiv preprint arXiv:1904.00625
Cointepas, Y., Mangin, J.-F., Garnero, L., Poline, J.-B., & Benali, H. (2001). Brainvisa: Software platform for visualization and analysis of multi-modality brain data. Neuroimage, 13(6), 98.
Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on mri scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.
Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53(1), 1–15.
Fedorenko, E., & Blank, I. A. (2020). Broca’s area is not a natural kind. Trends in Cognitive Sciences, 24(4), 270–284.
Fernández, V., & Borrell, V. (2023). Developmental mechanisms of gyrification. Current Opinion in Neurobiology, 80, 102711.
Garrison, J. R., Fernyhough, C., McCarthy-Jones, S., Haggard, M., 7, A. S. R. B. C. V...S. U.. S. R.. J. A.. M. B.. M. P.. C. S.. H. F.. P. C...L. C., & Simons, J. S. (2015). Paracingulate sulcus morphology is associated with hallucinations in the human brain. Nature communications, 6(1), 8956.
Gaser, C., Dahnke, R., Thompson, P. M., Kurth, F., Luders, E., & Initiative, A. D. N. (2022). Cat–a computational anatomy toolbox for the analysis of structural mri data. biorxiv, 2022–06.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–778).
IXI Dataset (2012). https://brain-development.org/ixi-dataset/
Keller, S. S., Crow, T., Foundas, A., Amunts, K., & Roberts, N. (2009). Broca’s area: Nomenclature, anatomy, typology and asymmetry. Brain and Language, 109(1), 29–48.
Keller, S. S., Highley, J. R., Garcia-Finana, M., Sluming, V., Rezaie, R., & Roberts, N. (2007). Sulcal variability, stereological measurement and asymmetry of broca’s area on mr images. Journal of Anatomy, 211(4), 534–555.
Knaus, T. A., Corey, D. M., Bollich, A. M., Lemen, L. C., & Foundas, A. L. (2007). Anatomical asymmetries of anterior perisylvian speech-language regions. Cortex, 43(4), 499–510.
LaMontagne, P. J., Benzinger, T. L., Morris, J. C., Keefe, S., Hornbeck, R., Xiong, C., Grant, E., Hassenstab, J., Moulder, K., Vlassenko, A. G., Raichle, M. E., Cruchaga, C., & Marcus, D. (2019). Oasis-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and alzheimer disease. MedRxiv, 2019–12.
Lee, P., Kim, H.-R., Jeong, Y., & Initiative, A. D. N. (2020). Detection of gray matter microstructural changes in alzheimer’s disease continuum using fiber orientation. BMC Neurology, 20, 1–10.
Li, X., Morgan, P. S., Ashburner, J., Smith, J., & Rorden, C. (2016). The first step for neuroimaging data analysis: Dicom to nifti conversion. Journal of neuroscience methods, 264, 47–56.
McCarthy, J., Collins, D. L., & Ducharme, S. (2018). Morphometric mri as a diagnostic biomarker of frontotemporal dementia: A systematic review to determine clinical applicability. NeuroImage: Clinical, 20, 685–696.
Miller, J. A., Voorhies, W. I., Lurie, D. J., D’Esposito, M., & Weiner, K. S. (2021). Overlooked tertiary sulci serve as a meso-scale link between microstructural and functional properties of human lateral prefrontal cortex. Journal of Neuroscience, 41(10), 2229–2244.
Miller, J. A., & Weiner, K. S. (2022). Unfolding the evolution of human cognition. Trends in Cognitive Sciences, 26(9), 735–737.
Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., Trojanowski, J. Q., Toga, A. W., & Beckett, L. (2005). The alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics, 15(4), 869–877.
Ono, M., Kubik, S., & Abernathey, C. D. (1990). Atlas of the Cerebral Sulci. New York: Thieme.
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical Parametric Mapping: The Analysis of Functional Brain Images. London: Elsevier.
Pérez-García, F., Sparks, R., & Ourselin, S. (2021). Torchio: A python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning. Computer Methods and Programs in Biomedicine, 208, 106236.
Perrot, M., Rivière, D., & Mangin, J.-F. (2011). Cortical sulci recognition and spatial normalization. Medical image analysis, 15(4), 529–550.
Sprung-Much, T., Eichert, N., Nolan, E., & Petrides, M. (2022). Broca’s area and the search for anatomical asymmetry: Commentary and perspectives. Brain Structure and Function, 227(2), 441–449.
Sprung-Much, T., & Petrides, M. (2018). Morphological patterns and spatial probability maps of two defining sulci of the posterior ventrolateral frontal cortex of the human brain: The sulcus diagonalis and the anterior ascending ramus of the lateral fissure. Brain Structure and Function, 223, 4125–4152.
Troiani, V., Patti, M. A., & Adamson, K. (2020). The use of the orbitofrontal h-sulcus as a reference frame for value signals. European Journal of Neuroscience, 51(9), 1928–1943.
Vallejo-Azar, M. N., Alba-Ferrara, L., Bouzigues, A., Princich, J. P., Markov, M., Bendersky, M., & Gonzalez, P. N. (2023). Influence of accessory sulci of the frontoparietal operculum on gray matter quantification. Frontiers in Neuroanatomy, 16, 134.
Vijayakumari, A. A., Fernandez, H. H., & Walter, B. L. (2023). Mri-based multivariate gray matter volumetric distance for predicting motor symptom progression in parkinson’s disease. Scientific Reports, 13(1), 17704.
Voorhies, W. I., Miller, J. A., Yao, J. K., Bunge, S. A., & Weiner, K. S. (2021). Cognitive insights from tertiary sulci in prefrontal cortex. Nature Communications, 12(1), 5122.
Weiner, K. S., Golarai, G., Caspers, J., Chuapoco, M. R., Mohlberg, H., Zilles, K., Amunts, K., & Grill-Spector, K. (2014). The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex. Neuroimage, 84, 453–465.
Welker, W. (1990). Why does cerebral cortex fissure and fold? a review of determinants of gyri and sulci. Cerebral Cortex: comparative structure and evolution of Cerebral Cortex, Part, II, 3–136.
Willbrand, E., Parker, B., Voorhies, W., Miller, J., Lyu, I., Hallock, T., Aponik-Gremillion, L., Koslov, S., Null, N., Bunge, S., Foster, B. L., & Weiner, K. S. (2022). Uncovering a tripartite landmark in posterior cingulate cortex. Science Adventure, 8, eabn9516.
Williams, L. Z., Fitzgibbon, S. P., Bozek, J., Winkler, A. M., Dimitrova, R., Poppe, T., Schuh, A., Makropoulos, A., Cupitt, J., O’Muircheartaigh, J., Duffc, E. P., Cordero-Grande, L., Price, A. N., Hajnal, J. V., Rueckert, D., Smith, S. M., Edwards, A. D., & Robinson, E. C. (2023). Structural and functional asymmetry of the neonatal cerebral cortex. Nature Human Behaviour, 1–14.
Yang, F., & Kruggel, F. (2009). A graph matching approach for labeling brain sulci using location, orientation, and shape. Neurocomputing, 73(1–3), 179–190.
Yang, S., Zhao, Z., Cui, H., Zhang, T., Zhao, L., He, Z., Liu, H., Guo, L., Liu, T., Becker, B., Kendrick, K. M., & Jiang, X. (2019). Temporal variability of cortical gyral-sulcal resting state functional activity correlates with fluid intelligence. Frontiers in Neural Circuits, 13, 36.
Yao, J. K., Voorhies, W. I., Miller, J. A., Bunge, S. A., & Weiner, K. S. (2023). Sulcal depth in prefrontal cortex: A novel predictor of working memory performance. Cerebral Cortex, 33(5), 1799–1813.
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13 (pp. 818–833). Springer.
Acknowledgements
We thank the technician Sergio Morganti, who acquired the images; the volunteers at III Normal Anatomy Department, Facultad de Medicina, Universidad de Buenos Aires (Argentina): Santiago Lasalle, César Gómez, Melanie Catena Baudo, Martina Arfili Perez y Lucía Canestrari who participated in our study in the process of image labeling; and the volunteers of Hospital El Cruce and Hospital Angel Roffo for their participation in this study.
Funding
This work was partially funded by PIP GI 2021-2023 - 11220200102472CO (CONICET) and PICT 2016-0116 (ANPCyT).
Author information
Authors and Affiliations
Contributions
Conception and study design: D.B., H.C.K., J.I.O., I.L. Data processing and analysis: D.B., H.C.K. Data Acquisition: M.V., M.B., P.G., L.A. Software development: D.B, H.C.K. Interpretation of results: D.B., H.C.K., J.I.O., I.L. Drafting the manuscript work and revising it: All authors Approval of final version to be published: All authors
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare that there are no conflicts of interest in this work.
Consent
Written informed consent was obtained from all patients/parti-cipants prior to their involvement in the study.
Ethics Approval
The ethical committees of Hospital El Cruce and Hospital Angel Roffo in Buenos Aires, Argentina, reviewed and approved the studies involving human participants.
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Braggio, D., Külsgaard, H.C., Vallejo-Azar, M. et al. A Self-supervised Deep Learning Model for Diagonal Sulcus Detection with Limited Labeled Data. Neuroinform 23, 13 (2025). https://doi.org/10.1007/s12021-024-09700-7
Accepted:
Published:
DOI: https://doi.org/10.1007/s12021-024-09700-7