Skip to main content
Log in

On technomorphic modelling and classification of biological joints

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Biological motion systems are of particular interest to engineers in robotics, prosthetics and micromechanics. Since biological motion systems show a high degree of mobility, smooth movements and minimal deployment of material, the analysis of such systems might help to invent or optimize technical motion systems. To enable the transfer of explanatory techniques, biomechanics and engineering need a shared terminology. Generally, a reference limb, muscles, tendons, a joint and a driven limb are forming two closed mechanisms with different transfer functions. The direction of the forces applied to links is influenced by guiding structures. Movable connections can be constructed by form closure, force closure, and compliance of an anisotropic segment between two rigid segments. Eleven different basic variants of rigid-body joint structures can be classified by the possible relative translatory and rotatory movements in orthogonal co-ordinates. If classified by the form of their rigid parts, biological rigid-body joints (diarthroses) show some similarities to technical joints, but occur in fewer basic variants. The functioning of exoskeletal joints can involve hydrostatic forces, depending on the structure of the rigid elements and the type of linkage between them.

Structural classification of biological joints should include at least: 1) degree of freedom (d.o.f.), 2) possible relative movements, 3) variability of d.o.f., 4) restrictions of range of motion, 5) stress in reaction to external forces. From an engineer’s viewpoint, additional features are necessary for structural characterization, including the maintenance of closure and guidance, the geometry and behaviour of contact, geometrical parameters and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blickhan, R.; Wisser, A.; Nachtigall, W. (eds.) (1998) Motion Systems: Proceedings of the First International Conference on Motion Systems, the Third Workshop of the Society of Technical Biology and Bionics and the Second Biomechanic Workshop of the Study-group Morphology (DZG). Biona Report 13. Stuttgart et al. Fischer.

  • Blickhan, R.; Bohmann, J. (1998) Der hydraulische Mechanismus des Spinnenbeines und seine Anwendung für technische Probleme. Z. angew. Math. Mech. 78(2): 87–96.

    Article  Google Scholar 

  • Bögelsack, G. (1998) On Structural Classification of Biological and Technical Joints. Proc. of IFToMM Comm. Standards for Terminology, University of Brno, pp 1–7.

  • Bögelsack, G.; Schilling, C. (1998) Joints in Nature and Technology- Comparison and Modelling. In: Blickhan, R.; Wisser, A.; Nachtigall, W. (eds.) Motion Systems. Biona Report 13. Stuttgart et al. Fischer. p 61–62.

    Google Scholar 

  • Budras, K.-D.; Fricke, W. (1991) Atlas der Anatomie des Hundes. Hannover, Schlüter’sche Verlagsanstalt.

    Google Scholar 

  • Chao, E. Y. S.; An Kai-Nan; Cooney, I. W. P.; Linscheid R. N. (1989) Biomechanics of the Hand, A basic Research Study. Singapore, World Scientific Publishing.

    Google Scholar 

  • Erlach, K. (1994) Anthropologische Aspekte des Maschinenbegriffs. In: Maier, W. & Zoglauer, Th. (ed.): Technomorphe Organismuskonzepte. problemata, frommann-holzboog 128, p 134–161.

  • Fischer, M. S. (1994) Crouched posture and high Fulcrum, a principle in the locomotion of small mammals. J. Human Evolution 26: 501–524.

    Article  Google Scholar 

  • Gutmann, W. F.; Weingarten, M. (1992) Grundlagen zur Konstruktionsmorphologie und organismischer Evolutionstheorie. Aufsätze u. Reden Senck. Naturforsch. Ges. 38: 51–68.

    Google Scholar 

  • Gutmann, W. F. (1996) Hydraulik und Kohärenz in lebenden Konstruktionen. In: Tagungsband zum 2. Ilmenauer Workshop für Mikrosystemtechnik, Ilmenau, pp 110–121.

    Google Scholar 

  • Gutmann, M. (1995) Modelle als Mittel wissenschaftlicher Begriffsbildung: Systematische Vorschläge zum Verständnis von Struktur und Funktion. Aufsätze u. Reden Senck. naturf. Ges. 43: 15–38.

    Google Scholar 

  • IFToMM Commission A (1991) Terminology for the Theory of Machines and Mechanisms. J. Mechanism and Machine Theory 26(5): 435–539.

    Article  Google Scholar 

  • Jacoby, J. (1990) Ikonische Darstellung von Mechanismen und Getrieben. J. Mechanism and Machine Theory 25(4): 397–405.

    Article  Google Scholar 

  • Kallenbach, E.; Bögelsack, G. (1991) Gerätetechnische Antriebe. München, Wien. Carl Hanser.

    Google Scholar 

  • Karner, M. (1998) Restrictions in the evolution of arthropod joints. Proc. European Mechanics Colloquium Euromech 375: Biology and Technology of Walking, pp 18–24.

  • Kozhevnikov, S. N.; Manzy, S. F.; Klykov, V. I. (1975) Some Aspects of Horse Elbow Joint Biomechanics. I. Mech. E., pp 809–813.

  • Kubein-Meesenburg, D.; Nägerl, H.; Fanghänel, J. (1990) Elements of a General Theory of Joints. I. Basic Kinematic and Static Function of Diarthrosis. Anat. Anz. Jena 170: 301–308.

    CAS  Google Scholar 

  • Morecki, A. (1983) On the Study of the Standardization of Terminology in Interdisciplinary Sciences. J. Mechanism and Machine Theory 18(3): 225–227.

    Article  Google Scholar 

  • Müller, J. (1990) Arbeitsmethoden der Technikwissenschaften. Berlin, Heidelberg, Springer.

    Google Scholar 

  • Nachtigall, W. (1998) Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Berlin, Heidelberg et al. Springer.

    Google Scholar 

  • Nägerl, H.; Kubein-Meesenburg, D. (1996) Zur Biomechanik menschlicher Gelenke. In: Tagungsband zum 2. Ilmenauer Workshop für Mikrosystemtechnik, Ilmenau pp 85–100.

  • Reuleaux, F. (1875) Theoretische Kinematik. Braunschweig. Vieweg & Sohn.

    Google Scholar 

  • Schröter, W. (1994) Zwangsgekoppelte Doppelgelenke. Offenlegungsschrift DE 43 03 152 A1, 1994, 8 pp.

  • Schumacher, G.-H. (1986) Atlas und Kompendium der Allgemeinen Anatomie. Leipzig. Georg Thieme.

    Google Scholar 

  • Schwörer, M.; Kohl, M.; Menz, W. (1998) Fluidic Microjoints Based on Spider Legs. Proc. 6th int. Conference on New Actuators. pp 103–106.

  • Volmer, J. (ed.) (1969) Getriebetechnik. Berlin. Verlag Technik.

    Google Scholar 

  • Voss, H.; Herrlinger, R. (1983) Einführung in die Anatomie — Bewegungsapparat. Vol. 1. Jena. Gustav Fischer Verlag.

    Google Scholar 

  • Wisser, A.; Nachtigall, W. (1991) Biomechanical aspects of the wing-joints in flies, especially in Calliphora erythrocephala. In: Schmidt-Kittler, N.; Vogel, K. (eds.) Constructional Morphology and Evolution. Berlin & London. Springer. pp 193–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Bögelsack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bögelsack, G., Karner, M. & Schilling, C. On technomorphic modelling and classification of biological joints. Theory Biosci. 119, 104–121 (2000). https://doi.org/10.1007/s12064-000-0007-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-000-0007-3

Key words

Navigation