Summary
Biological motion systems are of particular interest to engineers in robotics, prosthetics and micromechanics. Since biological motion systems show a high degree of mobility, smooth movements and minimal deployment of material, the analysis of such systems might help to invent or optimize technical motion systems. To enable the transfer of explanatory techniques, biomechanics and engineering need a shared terminology. Generally, a reference limb, muscles, tendons, a joint and a driven limb are forming two closed mechanisms with different transfer functions. The direction of the forces applied to links is influenced by guiding structures. Movable connections can be constructed by form closure, force closure, and compliance of an anisotropic segment between two rigid segments. Eleven different basic variants of rigid-body joint structures can be classified by the possible relative translatory and rotatory movements in orthogonal co-ordinates. If classified by the form of their rigid parts, biological rigid-body joints (diarthroses) show some similarities to technical joints, but occur in fewer basic variants. The functioning of exoskeletal joints can involve hydrostatic forces, depending on the structure of the rigid elements and the type of linkage between them.
Structural classification of biological joints should include at least: 1) degree of freedom (d.o.f.), 2) possible relative movements, 3) variability of d.o.f., 4) restrictions of range of motion, 5) stress in reaction to external forces. From an engineer’s viewpoint, additional features are necessary for structural characterization, including the maintenance of closure and guidance, the geometry and behaviour of contact, geometrical parameters and material properties.
Similar content being viewed by others
References
Blickhan, R.; Wisser, A.; Nachtigall, W. (eds.) (1998) Motion Systems: Proceedings of the First International Conference on Motion Systems, the Third Workshop of the Society of Technical Biology and Bionics and the Second Biomechanic Workshop of the Study-group Morphology (DZG). Biona Report 13. Stuttgart et al. Fischer.
Blickhan, R.; Bohmann, J. (1998) Der hydraulische Mechanismus des Spinnenbeines und seine Anwendung für technische Probleme. Z. angew. Math. Mech. 78(2): 87–96.
Bögelsack, G. (1998) On Structural Classification of Biological and Technical Joints. Proc. of IFToMM Comm. Standards for Terminology, University of Brno, pp 1–7.
Bögelsack, G.; Schilling, C. (1998) Joints in Nature and Technology- Comparison and Modelling. In: Blickhan, R.; Wisser, A.; Nachtigall, W. (eds.) Motion Systems. Biona Report 13. Stuttgart et al. Fischer. p 61–62.
Budras, K.-D.; Fricke, W. (1991) Atlas der Anatomie des Hundes. Hannover, Schlüter’sche Verlagsanstalt.
Chao, E. Y. S.; An Kai-Nan; Cooney, I. W. P.; Linscheid R. N. (1989) Biomechanics of the Hand, A basic Research Study. Singapore, World Scientific Publishing.
Erlach, K. (1994) Anthropologische Aspekte des Maschinenbegriffs. In: Maier, W. & Zoglauer, Th. (ed.): Technomorphe Organismuskonzepte. problemata, frommann-holzboog 128, p 134–161.
Fischer, M. S. (1994) Crouched posture and high Fulcrum, a principle in the locomotion of small mammals. J. Human Evolution 26: 501–524.
Gutmann, W. F.; Weingarten, M. (1992) Grundlagen zur Konstruktionsmorphologie und organismischer Evolutionstheorie. Aufsätze u. Reden Senck. Naturforsch. Ges. 38: 51–68.
Gutmann, W. F. (1996) Hydraulik und Kohärenz in lebenden Konstruktionen. In: Tagungsband zum 2. Ilmenauer Workshop für Mikrosystemtechnik, Ilmenau, pp 110–121.
Gutmann, M. (1995) Modelle als Mittel wissenschaftlicher Begriffsbildung: Systematische Vorschläge zum Verständnis von Struktur und Funktion. Aufsätze u. Reden Senck. naturf. Ges. 43: 15–38.
IFToMM Commission A (1991) Terminology for the Theory of Machines and Mechanisms. J. Mechanism and Machine Theory 26(5): 435–539.
Jacoby, J. (1990) Ikonische Darstellung von Mechanismen und Getrieben. J. Mechanism and Machine Theory 25(4): 397–405.
Kallenbach, E.; Bögelsack, G. (1991) Gerätetechnische Antriebe. München, Wien. Carl Hanser.
Karner, M. (1998) Restrictions in the evolution of arthropod joints. Proc. European Mechanics Colloquium Euromech 375: Biology and Technology of Walking, pp 18–24.
Kozhevnikov, S. N.; Manzy, S. F.; Klykov, V. I. (1975) Some Aspects of Horse Elbow Joint Biomechanics. I. Mech. E., pp 809–813.
Kubein-Meesenburg, D.; Nägerl, H.; Fanghänel, J. (1990) Elements of a General Theory of Joints. I. Basic Kinematic and Static Function of Diarthrosis. Anat. Anz. Jena 170: 301–308.
Morecki, A. (1983) On the Study of the Standardization of Terminology in Interdisciplinary Sciences. J. Mechanism and Machine Theory 18(3): 225–227.
Müller, J. (1990) Arbeitsmethoden der Technikwissenschaften. Berlin, Heidelberg, Springer.
Nachtigall, W. (1998) Bionik: Grundlagen und Beispiele für Ingenieure und Naturwissenschaftler. Berlin, Heidelberg et al. Springer.
Nägerl, H.; Kubein-Meesenburg, D. (1996) Zur Biomechanik menschlicher Gelenke. In: Tagungsband zum 2. Ilmenauer Workshop für Mikrosystemtechnik, Ilmenau pp 85–100.
Reuleaux, F. (1875) Theoretische Kinematik. Braunschweig. Vieweg & Sohn.
Schröter, W. (1994) Zwangsgekoppelte Doppelgelenke. Offenlegungsschrift DE 43 03 152 A1, 1994, 8 pp.
Schumacher, G.-H. (1986) Atlas und Kompendium der Allgemeinen Anatomie. Leipzig. Georg Thieme.
Schwörer, M.; Kohl, M.; Menz, W. (1998) Fluidic Microjoints Based on Spider Legs. Proc. 6th int. Conference on New Actuators. pp 103–106.
Volmer, J. (ed.) (1969) Getriebetechnik. Berlin. Verlag Technik.
Voss, H.; Herrlinger, R. (1983) Einführung in die Anatomie — Bewegungsapparat. Vol. 1. Jena. Gustav Fischer Verlag.
Wisser, A.; Nachtigall, W. (1991) Biomechanical aspects of the wing-joints in flies, especially in Calliphora erythrocephala. In: Schmidt-Kittler, N.; Vogel, K. (eds.) Constructional Morphology and Evolution. Berlin & London. Springer. pp 193–207.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bögelsack, G., Karner, M. & Schilling, C. On technomorphic modelling and classification of biological joints. Theory Biosci. 119, 104–121 (2000). https://doi.org/10.1007/s12064-000-0007-3
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s12064-000-0007-3