Skip to main content
Log in

Swarms of particle agents with harmonic interactions

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Agent-based modeling is a powerful methodology to describe the occurence of complex behavior in biological systems. The interaction of a large number of individuals (agents) may for example lead to the emergence of new forms of collective motion. In this paper, we investigate a particle-based approach to the coherent motion of a swarm with parabolic (i. e. harmonic) interactions between the agents. It is based on generalized Langevin equations for the particle agents, which take into account (i) energetic conditions for active motion, (ii) linear attractive forces between each two agents. The complex collective motion observed can be explained as the result of these different influences: the active motion of the agents, which is driven by the energy-take up, would eventually lead to a spatial dispersion of the swarm, while the mutual interaction of the agents results in a tendency of spatial concentration. In addition to particle-based computer simulations, we also provide a mathematical framework for investigating the collective dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Astumian, R. D. (1997) Thermodynamics and kinetics of a brownian motor. Science 276: 917–922.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Jacob, E.; Schochet, O.; Tenenbaum, A.; Cohen, I.; Czirók, A. and Vicsek, T. (1994) Generic modelling of cooperative growth patterns in bacterial colonies. Nature 368: 46–49.

    Article  PubMed  CAS  Google Scholar 

  • Bonabeau, E.; Dorigo, M. and Théraulaz, G. (1999) Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies on the Sciences of Complexity. New York: Oxford University Press.

    Google Scholar 

  • Bonabeau, E.; Dorigo, M. and Théraulaz, G. (2000) Inspiration for optimization from social insect behavior. Nature 406: 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Calenbuhr, V. and Deneubourg, J. L. (1990) A model for trail following in ants: individual and collective behaviour. In: Biological Motion (Alt, W. and Hoffmann, G., (eds.)). Springer, Berlin pp. 453–469.

    Google Scholar 

  • Czirok, A.; Barabasi, A. L. and Vicsek, T. (1999) Collective motion of self-propelled particles: Kinetic phase transition in one dimension. Physical Review Letters 82 (1): 209–212.

    Article  CAS  Google Scholar 

  • Czirok, A.; Ben-Jacob, E.; Cohen, I. and Vicsek, T. (1996) Formation of complex bacterial colonies via self-generated vortices. Physical Review E 54 (2): 1791–1801.

    Article  CAS  Google Scholar 

  • Czirok, A. and Vicsek, T. (2000) Collective behavior of interacting self-propelled particles. Physica A 281: 17–29.

    Article  Google Scholar 

  • DeAngelis, D. L. and Gross, L. J. (eds.) (1992) Individual-based Models and Approaches in Ecology: Populations, Communities, and Ecosystems. New York: Chapman and Hall.

    Google Scholar 

  • Derenyi, I. and Vicsek, T. (1995) Cooperative transport of brownian particles. Physical Review Letters 75/3: 374–377.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, A. (1999) Principles of morphogenetic motion: swarming and aggregation viewed as self-organization phenomena. J. Biosci. 24 (1): 115–120.

    Article  Google Scholar 

  • Deutsch, A. and Lawniczak, A. (1999) Probabilistic lattice models of collective motion and aggregation; from individual to collective dynamics. Mathematical Biosciences 156: 255–269.

    Article  PubMed  CAS  Google Scholar 

  • Durrett, R. and Levin, S. A. (1994 a) The importance of being discrete (and spatial). Theoretical Population Biology 46: 363–394.

    Article  Google Scholar 

  • Durrett, R. and Levin, S. A. (1994 b) Stochastic spatial models: a user’s guide to ecological applications. Philosphical Transactions of the Royal Society of London B 343: 329–350.

    Article  Google Scholar 

  • Ebeling, W.; Schweitzer, F. and Tilch, B. (1999) Active brownian particies with energy depots modelling animal mobility. BioSystems 49: 17–29.

    Article  PubMed  CAS  Google Scholar 

  • Edelstein-Keshet, L. (1994) Simple models for trail following behaviour: Trunk trails versus individual foragers. J. Math. Biol. 32: 303–328.

    Article  Google Scholar 

  • Edelstein-Keshet, L.; Watmough, J. and Ermentrout, G. B. (1995) Trail following in ants: individual properties determine population behaviour. Behav. Ecol Sociobiol 36: 119–133.

    Article  Google Scholar 

  • Erdmann, U.; Ebeling, W.; Schimansky-Geier, L. and Schweitzer, F. (2000) Brownian particles far from equilibrium. European Physical Journal B 15 (1): 105–113.

    Article  CAS  Google Scholar 

  • Feistel, R. and Ebeling, W. (1989) Evolution of Complex Systems. Self-Organization, Entropy and Development. Dordrecht: Kluwer.

    Google Scholar 

  • Flierl, G.; Grünbaum, D.; Levin, S. and Olson, D. (1999) From individuals to aggregations: the interplay between behavior and physics. Journal of Theoretical Biology 196: 397–454.

    Article  PubMed  CAS  Google Scholar 

  • Franke, K. and Gruler, H. (1990) Galvanotaxis of human granulocytes: electric field jump studies. Europ. Biophys. J. 18: 335–346.

    CAS  Google Scholar 

  • Grünbaum, D. and Okubo, A. (1994) Modelling social animal aggregation. In: Frontiers in Theoretical Biology (Levin, S. A., (ed.)), vol. 100 of Lecture Notes in Biomathematics. New York: Springer.

    Google Scholar 

  • Hänggi, P. and Bartussek, R. (1996) Brownian rectifiers: How to convert brownian motion into directed transport. In: Nonlinear Physics of Complex Systems — Current Status and Future Trends (Parisi, J., Müller, S. C. and Zimmermann, W., (eds.)). Berlin: Springer, pp. 294–308.

    Google Scholar 

  • Helbing, D.; Schweitzer, F.; Keltsch, J. and Molnár, P. (1997) Active walker model for the formation of human and animal trail systems. Physical Review E 56/3: 2527–2539.

    Article  CAS  Google Scholar 

  • Helbing, D. and Vicsek, T. (1999) Optimal self-organization. New Journal of Physics 1: 13.1–13.17.

    Article  Google Scholar 

  • Klimontovich, Y. L. (1994) Nonlinear Brownian motion. Physics-Uspekhi 37 (8): 737–766.

    Article  Google Scholar 

  • Lam, L. (1995) Active walker models for complex systems. Chaos, Solitons & Fractals 6: 267–285.

    Article  Google Scholar 

  • Lam, L.; Veinott, M. C. and Pochy, R. (1995) Abnormal spatiotemporal growth. In: Spatio-Temporal Patterns in Nonequilibrium Complex Systems (Cladis, P. E. and Palffy-Muhoray, P., (eds.)). Reading, MA: Addison-Wesley, pp. 659–670.

    Google Scholar 

  • Mikhailov, A. and Zanette, D. H. (1999) Noise-induced breakdown of coherent collective motion in swarms. Physical Review E 60: 4571–4575.

    Article  CAS  Google Scholar 

  • Mikhailov, A. S. and Meinköhn, D. (1997) Self-motion in physico-chemical systems far from thermal equilibrium. In: Stochastic Dynamics (Schimansky-Geier, L. and Pöschel, T., (eds.)), vol. 484 of Lecture Notes in Physics. Berlin: Springer, pp. 334–345.

    Google Scholar 

  • Othmer, H. G. and Stevens, A. (1997) Aggregation, blowup and collapse: the abc’s of taxis in reinforced random walks. SIAM J. of Applied Mathematics 57/4: 1044–1081.

    Article  Google Scholar 

  • Pasteels, J. M. and Deneubourg, J. L. (eds.) (1987) From Individual To Collective Behavior in Social Insects, vol. 54 of Experientia Supplementum. Basel: Birkhäuser.

    Google Scholar 

  • Phipps, M. J. (1992) From local to global: The lesson of cellular automata. In: DeAngelis and Gross (1992), pp. 165–186.

  • Rateitschak, K.; Klages, R. and Hoover, W. G. (2000) The Nosé-Hoover thermostated lorentz gas. Journal of Statistical Physics 101: 61–77.

    Article  Google Scholar 

  • Schienbein, M. and Gruler, H. (1993) Langevin equation, Fokker-Planck equation and cell migration. Bull. Mathem. Biology 55: 585–608.

    CAS  Google Scholar 

  • Schimansky-Geier, L.; Mieth, M.; Rosé, H. and Malchow, H. (1995) Structure formation by active brownian particles. Physics Letters A 207: 140–146.

    Article  CAS  Google Scholar 

  • Schimansky-Geier, L.; Schweitzer, F. and Mieth, M. (1997) Interactive structure formation with brownian particies. In: Self-Organization of Complex Structures: From Individual to Collective Dynamics (Schweitzer, F., (ed.)). London: Gordon and Breach, pp. 101–118.

    Google Scholar 

  • Schweitzer, F. (1997 a) Active brownian particles: Artificial agents in physics. In: Stochastic Dynamics (Schimansky-Geier, L. and Pöschel, T., (eds.)), vol. 484 of Lecture Notes in Physics. Berlin: Springer, pp. 358–371.

    Google Scholar 

  • Schweitzer, F. (ed.) (1997 b) Self-Organization of Complex Structures: From Individual to Collective Dynamics. Part 1: Evolution of Complexity and Evolutionary Optimization, Part 2: Biological and Ecological DynamcisSocio-Economic Processes, Urban Structure Formation and Traffic Dynamics. London: Gordon and Breach.

    Google Scholar 

  • Schweitzer, F. (1998) Modelling migration and economic agglomeration with active brownian particles. Advances in Complex Systems 1/1: 11–37.

    Article  Google Scholar 

  • Schweitzer, F. (2001) Brownian Agents and Active Particles. Springer Series in Synergetics. Berlin: Springer.

    Google Scholar 

  • Schweitzer, F.; Ebeling, W. and Tilch, B. (1998) Complex motion of brownian particles with energy depots. Physical Review Letters 80/23: 5044–5047.

    Article  CAS  Google Scholar 

  • Schweitzer, F.; Ebeling, W. and Tilch, B. (2001) Statistical mechanics of canonical-dissipative systems and applications to swarm dynamics. Physical Review E 64 (2): 021110-1–021110-12.

    Article  CAS  Google Scholar 

  • Schweitzer, F. and Holyst, J. (2000) Modelling collective opinion formation by means of active brownian particles. European Physical Journal B 15 (4): 723–732.

    Article  CAS  Google Scholar 

  • Schweitzer, F.; Lao, K. and Family, F. (1997) Active random walkers simulate trunk trail formation by ants. BioSystems 41: 153–166.

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer, F. and Schimansky-Geier, L. (1996) Clustering of active walkers: Phase transitions from local interactions. In: Fluctuations and Order: The New Synthesis (Millonas, M., (ed.)). New York: Springer, pp. 293–305.

    Google Scholar 

  • Schweitzer, F.; Tilch, B. and Ebeling, W. (2000) Uphill motion of active brownian particles in piecewise linear potentials. European Physical Journal B 14 (1): 157–168.

    Article  CAS  Google Scholar 

  • Stevens, A. (1993) Aggregation of myxobacteria — a many particle system. In: Proc. First European Conference of Mathematics Applied to Biology and Medicine. Winnipeg: Wuerz Publishing, pp. 519–524.

    Google Scholar 

  • Stevens, A. (1995) Trail following and aggregation of myxobacteria. J. of Biol. Systems 3: 1059–1068.

    Article  Google Scholar 

  • Stevens, A. and Schweitzer, F. (1997) Aggregation induced by diffusing and nondiffusing media. In: Dynamics of Cell and Tissue Motion (Alt, W., Deutsch, A. and Dunn, G., (eds.)). Basel: Birkhäuser, pp. 183–192.

    Google Scholar 

  • Tilch, B.; Schweitzer, F. and Ebeling, W. (1999) Directed motion of brownian particles with internal energy depot. Physica A 273 (3–4): 294–314.

    Article  Google Scholar 

  • Vicsek, T.; Czirok, A.; Ben-Jacob, E.; Cohen, I. and Shochet, O. (1995) Novel type of phase transition in a system of self-driven particles. Physical Review Letters 75: 1226–1229.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Ebeling.

Additional information

Dedicated to the memory of Michael Conrad

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebeling, W., Schweitzer, F. Swarms of particle agents with harmonic interactions. Theory Biosci. 120, 207–224 (2001). https://doi.org/10.1007/s12064-001-0019-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-001-0019-7

Key words

Navigation