Skip to main content

Advertisement

Log in

Robot control and the evolution of modular neurodynamics

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

A modular approach to neural behavior control of autonomous robots is presented. It is based on the assumption that complex internal dynamics of recurrent neural networks can efficiently solve complex behavior tasks. For the development of appropriate neural control structures an evolutionary algorithm is introduced, which is able to generate neuromodules with specific functional properties, as well as the connectivity structure for a modular synthesis of such modules. This so called ENS 3-algorithm does not use genetic coding. It is primarily designed to develop size and connectivity structure of neuro-controllers. But at the same time it optimizes also parameters of individual networks like synaptic weights and bias terms. For demonstration, evolved networks for the control of miniature Khepera robots are presented. The aim is to develop robust controllers in the sense that neuro-controllers evolved in a simulator show comparably good behavior when loaded to a real robot acting in a physical environment. Discussed examples of such controllers generate obstacle avoidance and phototropic behaviors in non-trivial environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami, C. (1998) Introduction to Artificial Life, Springer Verlag, New York.

    Google Scholar 

  2. Angeline, P. J.; Saunders, G. B. and Pollack, J. B. (1994) An Evolutionary Algorithm that Evolves Recurrent Neural Networks, IEEE Transactions on Neural Networks, 5, 54–65.

    Article  Google Scholar 

  3. Arbib, M. A.; Érdi, P., and Szentágothai, J (1998) Neural Organization — Structure, Function, and Dynamics, MIT Press, Massachusetts.

    Google Scholar 

  4. Ashby, W. R. (1952) Design for a Brain, Wiley, New York.

    Google Scholar 

  5. Beer, R. D., and Gallagher, J. C. (1992) Evolving dynamical neural networks for adaptive behavior, Adaptive Behavior, 1, 91–122.

    Article  Google Scholar 

  6. Braitenberg, V. (1984) Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, MA.

    Google Scholar 

  7. Brooks, R. A. (1986) A robust layered control system for as mobile robot, IEEE Journal of Robotics and Automation, RA-2, 14–23.

    Google Scholar 

  8. Buzsáki, G.; Llinás, R.; Singer, W.; Berthoz, A., and Christen, Y. (eds.) (1994) Temporal Coding in the Brain, Springer Verlag, Berlin.

    Google Scholar 

  9. Calabretta, R.; Nolfi, S.; Parisi, D., and Wagner, P. (1998) A case study of the evolution of modularity: towards a bridge between evolutionary biology, artificial life, neuro- and cognitive science, in: Adami, C., Belew, R. K., Kitano, H., and Taylor, C. E. (Eds.), Artificial Life VI, Proceedings of The Sixth International Conference on Artificial Life, MIT Press, Cambridge.

    Google Scholar 

  10. Cliff, D.; Harwey, I., and Husbands, P. (1993) Exploration in evolutionary robotics, Adaptive Behavior, 2, 73–110.

    Article  Google Scholar 

  11. Duke, W., and Pritchard, W. S. (Eds.) (1991) Proceedings of the Conference on Measuring Chaos in the Human Brain, World Scientific, Singapore.

    Google Scholar 

  12. Elbert, T.; Ray, W. J.; Kowalik, Z. J.; Skinner, K. E.; Graf, K. E., and Birbaumer, N. (1994) Chaos and physiology: deterministic chaos in excitable cell assemblies, Physiological Review, 74, 1–47.

    CAS  Google Scholar 

  13. Floreano, D. (1997) Ago ergo sum, in: Mulhauser, G (ed.), Evolving Consciousness, J. Benjamins, Amsterdam.

    Google Scholar 

  14. Gaussier, P., and Zrehen, S. (1994) A topological neural map for on-line learning: Emergence of obstacle avoidance in a mobile robot, in: Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S. (eds.), From Animals to Animats III: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Cambridge, MA: MIT Press-Bradford Books, pp. 282–290.

    Google Scholar 

  15. Husbands, P., and Harwey, I. (1992) Evolution versus design: Controlling autonomous robots, in: Integrating perception, planning and action: Proceedings of the Third Annual Conferences on Artificial Intelligence, IEEE Press, Los Alamitos.

    Google Scholar 

  16. Husbands, P.; Harwey, I., and Cliff, D. (1995) Circle in the Round: State Space Attractors for Evolved Sighted Robots, in: Steels, L. (ed.), The Biology and Technology of Intelligent Autonomous Agents}, NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 144, Springer, pp. 222–257.

  17. Kodjabachian, J., and Meyer, J. A. (1998) Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects, IEEE Transactions on Neural Networks, 9, 796–812.

    Article  Google Scholar 

  18. Langton, C. G. (1989) Artificial Life, in: Langton, C. G. (ed.) Artificial Life, Addison-Wesley, Redwood City CA.

    Google Scholar 

  19. Lara, B.; Hülse, M., and Pasemann, F. (2001) Evolving different neuro-modules and their interfaces to control autonomous robots, MPI-MIS-Preprint 21, accepted paper for “The 5th World Multi-Conference on Systemics, Cybernetics and Informatics” (SCI2001), July 22–25, 2001, Orlando, Florida USA, Proceedings.

  20. Michel, O., (1996) Khepera Simulator Package version 2.0: Freeware mobile robot simulator written at the University of Nice Sophia-Antipolis by Oliver Michel. Downloadable from the World Wide Web at http://www.i3s.unice.fr/~om/khep-sim.html.

  21. Mondada, F.; Franzi, E., and Ienne, P. (1993) Mobile robots miniturization: a tool for investigation in control algorithms, in: Proceedings of ISER’ 93, Kyoto, October 1993.

  22. Mondada, F. and Floreano, D. (1995), Evolution of neural control structures: Some experiments on mobile robots, Robotics and Autonomous Systems, 16, 183–195.

    Article  Google Scholar 

  23. Nolfi, S., and Floreano, D. (2000), Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines, MIT Press, Cambridge.

    Google Scholar 

  24. Nolfi, S. (1998), Evolutionary robotics: Exploiting the full power of self-organization, Connection Science, 10, 167–183.

    Article  Google Scholar 

  25. Pantev, C.; Elbert, T., and Lutkenhöhner, B. (eds.) (1995), Oscillatory Event-related Brain Dynamics, Plenum Press, London.

    Google Scholar 

  26. Pasemann, F. (1993), Dynamics of a single model neuron, International Journal of Bifurcation and Chaos, 2, 271–278.

    Article  Google Scholar 

  27. Pasemann, F. (1998), Evolving neurocontrollers for balancing an inverted pendulum, Network: Computation in Neural Systems, 9, 495–511.

    Article  CAS  Google Scholar 

  28. Pasemann, F. (1998), Structure and Dynamics of Recurrent Neuromodules, Theory in Biosciences, 117, 1–17.

    Google Scholar 

  29. Pfeifer, R., and Scheier, C. (2000), Understanding Intelligence, MIT Press, Cambridge.

    Google Scholar 

  30. Pfeifer, R., and Verschure, F. M. J. (1993), Designing efficiently navigating non-goal-directed robots, in: Meyer, J.-A., Roitblat, H., and Wilson, S. (eds.), From Animals to Animats II: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Cambridge, MA: MIT Press-Bradford Books, pp. 31–38.

    Google Scholar 

  31. Renals, S., and Rohwer, R. (1990), A study of network dynamics, Journal of Statistical Physics, 58, 825–848.

    Article  Google Scholar 

  32. Scutt, T. (1994), The fife neuron trick: Using classical conditioning to learn how to seek light, in: Cliff, D., Husbands, P., Meyer, J.-A., and Wilson, S. (eds.), From Animals to Animats III: Proceedings of the Third International Conference on Simulation of Adaptive Behavior, Cambridge, MA: MIT Press-Bradford Books, pp. 264–370.

    Google Scholar 

  33. Schaffer, J. D.; Whitley, D., and Eshelman, L. J. (1992), Combination of genetic algorithms and neural networks: A survey of the state of the art, in: Whitley, D., and Schaffer, J. D. (eds.) International Workshop on Combinations of Genetic Algorithms and Neural Networks — Proceedings COGANN-92, IEEE Computer Society Press, Los Alamitos, CA.

    Google Scholar 

  34. Turney, P.; Whitley, D., and Anderson, R. (1996), Evolution, learning, and instinct: 100 years of the Baldwin effect, Editorial for the Special Issue: The Baldwin Effect, Evolutionary Computation, 3, 4.

    Google Scholar 

  35. Verschure, F. M. J., and Pfeifer, R. (1993), Categorization, representation, and the dynamics of system-environment interaction: a case study in autonomous systems, in: Meyer, J.-A., Roitblat, H., and Wilson, S. (eds.), From Animals to Animats II: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, Cambridge, MA: MIT Press-Bradford Books, pp. 210–217.

    Google Scholar 

  36. Wang, X., and Blum, E. K. (1995), Dynamics and bifurcation of neural networks, in: Arbib, M. A. (ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  37. Drawing Graphs with VGJ, http://lsiibm15.epfl.ch/graph_drawing.html, 07. 06. 2001.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Pasemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasemann, F., Steinmetz, U., Hülse, M. et al. Robot control and the evolution of modular neurodynamics. Theory Biosci. 120, 311–326 (2001). https://doi.org/10.1007/s12064-001-0025-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-001-0025-9

Key words

Navigation