Skip to main content
Log in

Synchronization of neuronal assemblies in reciprocally connected cortical areas

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

To investigate scene segmentation in the visual system we present a model of two reciprocally connected visual areas comprising spiking neurons. The peripheral area P is modeled similar to the primary visual cortex, while the central area C is modeled as an associative memory representing stimulus objects according to Hebbian learning. Without feedback from area C, spikes corresponding to stimulus representations in P are synchronized only locally (slow state). Feedback from C can induce fast oscillations and an increase of synchronization ranges (fast state). Presenting a superposition of several stimulus objects, scene segmentation happens on a time scale of hundreds of milliseconds by alternating epochs of the slow and fast state, where neurons representing the same object are simultaneously in the fast state. We relate our simulation results to various phenomena observed in neurophysiological experiments, such as stimulus-dependent synchronization of fast oscillations, synchronization on different time scales, ongoing activity, and attention-dependent neural activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. (1982) Local cortical circuits. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Aertsen, A., Erb, M. and Palm, G. (1994) Dynamics of functional coupling in the cerebral cortex: an attempt at a model-based interpretation. Physica D, 75: 103–128.

    Article  Google Scholar 

  • Anderson, J., Lampl, I., Reichova, I., Carandini, M. and Ferster, D. (2000) Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex. Nature Neuroscience, 3(6): 617–621.

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg, V. (1978) Cell assemblies in the cerebral cortex. In Heim, R. and Palm, G., editors, Lecture notes in biomathematics (21). Theoretical approaches to complex systems., pages 171–188. Springer-Verlag, Berlin Heidelberg New York.

    Google Scholar 

  • Braitenberg, V. and Schüz, A. (1991) Anatomy of the cortex. Statistics and geometry. Springer-Verlag, Berlin.

    Google Scholar 

  • Crick, F. and Koch, C. (1990) Towards a neurobiological theory of consciousness. Sem. Neurosci., 2:263–275.

    Google Scholar 

  • Eckhorn, R. (1994) Oscillatory and non-oscillatory synchronizations in the visual cortex and their possible roles in associations of visual features. In Pelt, J., Corner, M., Uylings, H., and Lopes da Silva, F., editors, Progress in Brain Research, volume 102, chapter 28, pages 405–426. Elsevier Science BV.

  • Frien, A., Eckhorn, R., Bauer, R., Woelbern, T., and Kehr, H. (1994) Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. NeuroReport, 5(17): 2273–2277.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. (1949) The organization of behavior. A neuropsychological theory. Wiley, New York.

    Google Scholar 

  • Horn, D., Sagi, D. and Usher, M. (1991) Segmentation, binding, and illusory conjunctions. Neural Computation, 3: 510–525.

    Google Scholar 

  • Knoblauch, A. and Palm, G. (2001) Pattern separation and synchronization in spiking associative memories and visual areas. Neural Networks, 14: 763–780.

    Article  PubMed  CAS  Google Scholar 

  • Knoblauch, A. and Palm, G. (2002a) Scene segmentation by spike synchronization in reciprocally connected visual areas. I. Local effects of cortical feedback. Biological Cybernetics, 87(3): 151–167.

    Article  PubMed  Google Scholar 

  • Knoblauch, A. and Palm, G. (2002b) Scene segmentation by spike synchronization in reciprocally connected visual areas. II. Global assemblies and synchronization on larger space and time scales. Biological Cybernetics, 87(3): 168–184.

    Article  PubMed  Google Scholar 

  • Knoblauch, A. and Sommer, F. (2003) Synaptic plasticity, conduction delays, and inter-areal phase relations of spike activity in a model of reciprocally connected areas. to appear in Neurocomputing.

  • Markram, H., Lübke, J., Frotscher, M. and Sakmann, B. (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275: 213–215.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R., editor (2000) Time and the Brain. Conceptual Advances in Brain research. Harwood Academic Publishers, Amsterdam.

    Google Scholar 

  • Nelson, J., Salin, P., Munk, M., Arzi, M. and Bullier, J. (1992) Spatial and temporal coherence in corticocortical connections: a cross-correlation study in areas 17 and 18 in the cat. Visual Neuroscience, 9: 21–38.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, H. and Sepp, W. (1999) Recurrent V1–V2 interaction in early visual boundary processing. Biological Cybernetics, 81: 425–444.

    Article  PubMed  CAS  Google Scholar 

  • Palm, G. (1980) On associative memories. Biological Cybernetics, 36: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Palm, G. (1982) Neural Assemblies. An Alternative Approach to Artificial Intelligence. Springer, Berlin.

    Google Scholar 

  • Palm, G. (1990) Cell assemblies as a guideline for brain research. Concepts in Neuroscience, 1: 133–148.

    Google Scholar 

  • Pöppel, E. (1994) Temporal mechanisms in perception. International Review of Neurobiology, 37: 185–202.

    Article  PubMed  Google Scholar 

  • Reynolds, J. and Desimone, R. (1999) The role of neural mechanisms of attention in solving the binding problem. Neuron, 24: 19–29.

    Article  PubMed  CAS  Google Scholar 

  • Ritz, R., Gerstner, W., Fuentes, U. and van Hemmen, J. (1994) A biologically motivated and analytically soluble model of collective oscillations in the cortex. II. Applications to binding and pattern segmentation. Biol. Cybern., 71: 349–358.

    PubMed  CAS  Google Scholar 

  • Singer, W. and Gray, C. (1995) Visual feature integration and the temporal correlation hypothesis. Annu.Rev.Neurosci., 18: 555–586.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, F. and Palm, G. (1999) Improved bidirectional retrieval of sparse patterns stored by hebbian learning. Neural Networks, 12: 281–297.

    Article  PubMed  Google Scholar 

  • Swadlow, H. (2000) Information flow along neocortical axons. In Miller (2000), chapter 4, pages 131–155.

  • Treisman, A. (1998) Feature binding, attention and object perception. Phil. Trans. R. Soc. London B, 353: 1295–1306.

    Article  CAS  Google Scholar 

  • Tsodyks, M., Kenet, T., Grinvald, A. and Arieli, A. (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 286: 1943–1946.

    Article  PubMed  CAS  Google Scholar 

  • von der Malsburg, C. (1986) Am I thinking assemblies? In Palm, G. and Aertsen, A., editors, Brain Theory, pages 161–176. Springer-Verlag, Berlin/Heidelberg.

    Google Scholar 

  • Wennekers, T. and Palm, G. (2000) Cell assemblies, associative memory and temporal structure in brain signals. In Miller (2000), chapter 10, pages 251–273.

  • Willshaw, D., Buneman, O., and Longuet-Higgins, H. (1969) Non-holographic associative memory. Nature, 222: 960–962.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Knoblauch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoblauch, A., Palm, G. Synchronization of neuronal assemblies in reciprocally connected cortical areas. Theory Biosci. 122, 37–54 (2003). https://doi.org/10.1007/s12064-003-0036-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0036-9

Key words

Navigation