Skip to main content

Advertisement

Log in

Models of distributed associative memory networks in the brain

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Although experimental evidence for distributed cell assemblies is growing, theories of cell assemblies are still marginalized in theoretical neuroscience. We argue that this has to do with shortcomings of the currently best understood assembly theories, the ones based on formal associative memory models. These only insufficiently reflect anatomical and physiological properties of nervous tissue, and their functionality is too restricted to provide a framework for cognitive modeling. We describe cell assembly models that integrate more neurobiological constraints and review results from simulations of a simple nonlocal associative network formed by a reciprocal topographic projection. Impacts of nonlocal associative projections in the brain are discussed with respect to the functionality they can explain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M. (1991) Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., Palm, G., and Adrian, E. D. (1989) Dynamics of neuronal firing correlation: Modulation of “effective connectivity”. J. Neurophysiol. 61: 900–917.

    PubMed  CAS  Google Scholar 

  • Amit, D., Gutfreund, H., and Sompolinsky, H. (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55: 1530–1533.

    Article  PubMed  Google Scholar 

  • Amit, D. J. (1995) The Hebbian paradigm reintegrated: Local reverberations as internal representations. Behav. Brain Sci. 18: 617–657.

    Article  Google Scholar 

  • Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996) Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science 273: 1868–1871.

    Article  PubMed  CAS  Google Scholar 

  • Bibbig, A., Wennekers, T., and Palm, G. (1995) A neural network model of the cortico-hippocampal interplay and the representation of contexts. Behav. Brain Res. 66: 169–175.

    Article  PubMed  CAS  Google Scholar 

  • Bienenstock, E. (1994) A model of neocortex. Network 6: 179–224.

    Article  Google Scholar 

  • Braitenberg, V. (1978) Cell assemblies in the cerebral cortex. In Heim, R. and Palm, G., editors, Theoretical approaches to complex systems, pages 171–188. Springer, Berlin.

    Google Scholar 

  • Braitenberg, V. and Schüz, A. (1991) The anatomy of the cortex. Statistics and Geometry. Springer, Berlin.

    Google Scholar 

  • Damasio, A. R. (1989) The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1: 123–132.

    Google Scholar 

  • Dayan, P. and Abbott, L. F. (2002) Theoretical Neuroscience. MIT Press, Boston, MA.

    Google Scholar 

  • Edelman, G. M. (1982) Selective networks capable of representative transformations, limited generalizations, and associative memory. Proc. Natl. Acad. Sci. 79: 2091–2095.

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum, H. (1993) Thinking about brain cell assemblies. Science 261: 993–994.

    Article  PubMed  CAS  Google Scholar 

  • Felleman, D. J. and Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1: 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Fransén, E. and Lansner, A. (1998) A model of cortical associative memory based on a horizontal network of connected columns. Network 9(2): 235–264.

    PubMed  Google Scholar 

  • Fuster, J. (1995) Memory in the cerebral cortex. MIT Press, Boston, MA.

    Google Scholar 

  • Gardner, E. (1988) The space of interactions in neural network models. J. Phys. A 21: 257–270.

    Article  Google Scholar 

  • Gardner-Medwin, A. (1976) The recall of events through the learning of associations between their parts. Proc. Roy. Soc. Lond. B 194: 375–402.

    CAS  Google Scholar 

  • Grün, S., Diesmann, M., and Aertsen, A. (2002) Unitary events in multiple single-neuron spiking activity: I. detection and significance. Neural Comput. 14: 81–119.

    Article  PubMed  Google Scholar 

  • Hasselmo, M. (1993) Acetylcholine and learning in a cortical associative memory. Neural Comput. 5: 32–44.

    Article  Google Scholar 

  • Hayek, F. (1952) The sensory order. Chicago University Press, Chicago, IL.

    Google Scholar 

  • Hebb, D. O. (1949) The Organization of Behaviour. Wiley, New York.

    Google Scholar 

  • Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79: 2554–2558.

    Article  PubMed  CAS  Google Scholar 

  • James, W. (1890) Principles of Psychology. Holt, New York.

    Google Scholar 

  • Kohonen, T. (1972) Correlation matrix memories. IEEE Trans. Computers C-21: 353–359.

    Article  Google Scholar 

  • Levy, W. B., Brassel, S. E., and Moore, S. D. (1983) Partial quantification of the associative synaptic learning rule of the dentate gyrus. Neurosci. 81: 799–808.

    Article  Google Scholar 

  • Lisman, J. E., Fellous, J. M. and Wang, X. J. (1998) A role for NMDA-receptor channels in working memory. Nat. Neurosci. 1(4): 273–275.

    Article  PubMed  CAS  Google Scholar 

  • Little, W. A. (1974) The existence of persistent states in the brain. Math. Biosci. 19: 101–120.

    Article  Google Scholar 

  • Lorente de No, R. (1938) The cerebral cortex: Architecture, intracortical connections and motor projections. In Fulton, J. F., editor, Physiology of the Nervous System, pages 291–339. Oxford University Press, London.

    Google Scholar 

  • Lund, J. S., Angelucci, A., and Bressloff, P. C. (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb. Cortex 13: 15–24.

    Article  PubMed  Google Scholar 

  • Malach, R. (1994) Cortical columns as devices for maximizing neuronal diversity. Trends Neurosci. 3: 101–104.

    Article  Google Scholar 

  • Marr, D. (1971) Simple memory: A theory for archicortex. Phil.Trans.Roy. Soc. London B 262: 23–81.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1998) From sensation to cognition. Brain 121: 1013–1052.

    Article  PubMed  Google Scholar 

  • Miller, R. (1991) Designs for a prototype cerebral cortex. In Braitenberg, V., Barlow, H. B., Bullock, T. H., Florey, E., and Grüsser, O.-J., editors, Cortico-hippocampal interplay and the representation of context in the brain, pages 11–32. Springer, Berlin.

    Google Scholar 

  • Miller, R. (1996a) Cortico-thalamic interplay and the security of operation of neural assemblies and temporal chains in the cerebral cortex. Biol. Cybern. 73: 258–270.

    Google Scholar 

  • Miller, R. (1996b) Neural assemblies and laminar interactions in the cerebral cortex. Biol. Cybern. 75: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B. (1978) An organizing principle for cerebral function: the unit module and distributed function. In Edelman, G. and Mountcastle, V. B., editors, The Mindful Brain, pages 56–100. MIT Press, Cambridge.

    Google Scholar 

  • Palm, G. (1982) Neural Assemblies. Springer, Berlin.

    Google Scholar 

  • Pinsky, P. F. and Rinzel, J. (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1: 39–60.

    Article  PubMed  CAS  Google Scholar 

  • Pulvermüller, F. (1992) Constituents of a neurological theory of language. Concepts in Neuroscience 3: 157–200.

    Google Scholar 

  • Renart, A., Parga, N., Rolls, E. T. (1999) Backward projections in the cerebral cortex: Implications for memory storage. Neural Comput. 11(6): 1349–1388.

    Article  PubMed  CAS  Google Scholar 

  • Riehle, A., Grün, S., Diesmann, M., and Aertsen, A. (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278: 1950–1953.

    Article  PubMed  CAS  Google Scholar 

  • Rolls, E. T., Treves, A., Foster, D., and Perez-Vicente, C. (1997) Simulation studies of the CA3 hippocampal subfield modelled as an attractor neural network. Neural Networks 10(9): 1559–1569.

    Article  Google Scholar 

  • Schwenker, F., Sommer, F. T., and Palm, G. (1996) Iterative retrieval of sparsely coded associative memory patterns. Neural Networks 9(3): 445–455.

    Article  Google Scholar 

  • Shaw, G. L., Silverman, D. J., and Pearson, J. C. (1985) Model of cortical organization embodying a basis for the theory of information processing and memory recall. Proc. Natl. Acad. Sci. 82: 2364–2368.

    Article  PubMed  CAS  Google Scholar 

  • Singer, W. and Gray, C. M. (1995) Visual feature integration and the temporal correlation hypotheses. Ann. Rev. Neurosci. 18: 555–568.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, F. T. (2000) On cell assemblies in a cortical column. Neurocomputing 32–33: 517–522.

    Article  Google Scholar 

  • Sommer, F. T. and Dayan, P. (1998) Bayesian retrieval in associative memories with storage errors. IEEE Trans. Neural Networks 9(4): 705–713.

    Article  CAS  Google Scholar 

  • Sommer, F. T. and Palm, G. (1999) Improved bidirectional retrieval of sparse patterns stored by Hebbian learning. Neural Networks 12: 281–297.

    Article  PubMed  Google Scholar 

  • Sommer, F. T. and Wennekers, T. (2000) Modeling studies on the computational function of fast temporal structure in cortical circuit activity. J. Physiol. Paris 94(5–6): 473–488.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, F. T., Wennekers, T. (2001a) Associative memory in a pair of cortical cell groups with reciprocal connections. Neurocomputing 38: 1575–1580.

    Article  Google Scholar 

  • Sommer, F. T. and Wennekers, T. (2001b) Associative memory in networks of spiking neurons. Neural Networks 14(6–7): 825–834.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, F. T., Wennekers, T., and Palm, G. (1998) Bidirectional completion of Cell Assemblies in the cortex. In: Computational Neuroscience: Trends in Research. Plenum Press.

  • Steinbuch, K. (1961) Die Lernmatrix. Kybernetik (Biol. Cybern.) 1: 36–45.

    Google Scholar 

  • Taylor, W. K. (1956) Electrical simulation of some nervous system functional activities. In Information Theory, Vol. 3, pages 314–328. Butterworths.

  • Traub, R. D., Wong, R. K. S., Miles, R., and Michelson, H. (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J. Neurophysiol. 66(2): 635–650.

    PubMed  CAS  Google Scholar 

  • Treves, A. and Rolls, E. T. (1992) Computational analysis of the operation of a real neuronal network in the brain: the role of the hippocampus in memory. volume 2, pages 891–898. Elsevier Science Publishers B.V.

  • Wennekers, T. and Palm, G. (1997) On the relation between neural modeling and experimental neuroscience. Theory Biosci. 116: 273–289.

    Google Scholar 

  • Wickelgren, W. A. (1992) Webs, cell assemblies, and chunking in neural nets. Concepts in Neuroscience 3: 1–53.

    Google Scholar 

  • Wickens, J. R. and Miller, R. (1997) A formalism of the neural assembly concept 1. constraints on neural assembly size. Biol. Cybern. 77: 351–358.

    Article  Google Scholar 

  • Willshaw, D. J., Buneman, O. P., and Longuet-Higgins, H. C. (1969) Non-holographic associative memory. Nature 222: 960–962.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich T. Sommer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommer, F.T., Wennekers, T. Models of distributed associative memory networks in the brain. Theory Biosci. 122, 55–69 (2003). https://doi.org/10.1007/s12064-003-0037-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0037-8

Key words

Navigation