Skip to main content
Log in

Sequence detectors as a basis of grammar in the brain

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Grammar processing may build upon serial-order mechanisms known from non-human species. A circuit similar to that underlying direction-sensitive movement detection in arthropods and vertebrates may become selective for sequences of words, thus yielding grammatical sequence detectors in the human brain. Sensitivity to the order of neuronal events arises from unequal connection strengths between two word specific neural units and a third element, the sequence detector. This mechanism, which critically depends on the dynamics of the neural units, can operate at the single neuron level and may be relevant at the level of neuronal ensembles as well. Due to the repeated occurrence of sequences, for example word strings, the sequence-sensitive elements become more firmly established and, by substitution of elements between strings, a process called auto-associative substitution learning (AASL) is triggered. AASL links the neuronal counterparts of the string elements involved in the substitution process to the sequence detector, thereby providing a brain basis of what can be described linguistically as the generalization of rules of grammar. A network of sequence detectors may constitute grammar circuits in the human cortex on which a separate set of mechanisms establishing temporary binding and recursion can operate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M., Bergman, H., Margalit, E. and Vaadia, E. (1993) Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. Journal of Neurophysiology 70: 1629–1638.

    PubMed  CAS  Google Scholar 

  • Barlow, H. and Levick, W. R. (1965) The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology 178: 477–504.

    PubMed  CAS  Google Scholar 

  • Barlow, H. B., Hill, R. M. and Levick, W. R. (1964) Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. Journal of Physiology 173: 377–407.

    PubMed  CAS  Google Scholar 

  • Bienenstock, E. (1996) On the dimensionality of cortical graphs. Journal of Physiology, Paris 90: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield, L. (1933) Language. Holt, New York.

    Google Scholar 

  • Braitenberg, V. (1978) Cell assemblies in the cerebral cortex. In Theoretical approaches to complex systems. (Lecture notes in biomathematics, vol. 21) (ed. R. Heim and G. Palm), pp. 171–188. Springer, Berlin.

    Google Scholar 

  • Braitenberg, V. (2001) Brain size and number of neurons: an exercise in synthetic neuroanatomy. Journal of Computational Neuroscience 10: 71–77.

    Article  PubMed  CAS  Google Scholar 

  • Braitenberg, V., Heck, D. and Sultan, F. (1997) The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behavioral and Brain Sciences 20: 229–245.

    PubMed  CAS  Google Scholar 

  • Braitenberg, V. and Schüz, A. (1998) Cortex: statistics and geometry of neuronal connectivity, 2 edition. Springer, Berlin.

    Google Scholar 

  • Chomsky, N. (1963) Formal properties of grammars. In Handbook of mathematical psychology. Volume 2 (ed. R. D. Luce, R. R. Bush and E. Galanter), pp. 323–418. Wiley, New York, London.

    Google Scholar 

  • Crespi-Reghizzi, S., Pradella, M. and San Pietro, P. (2001) Associative definitions of programming languages. Computer Languages 27: 105–123.

    Google Scholar 

  • Egelhaaf, M., Borst, A. and Reichardt, W. (1989) Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. Journal of the Optical Society of America (A) 6: 1070–1087.

    CAS  Google Scholar 

  • Fuster, J. M. (1995) Memory in the cerebral cortex. An empirical approach to neural networks in the human and nonhuman primate. MIT Press, Cambridge, MA.

    Google Scholar 

  • Fuster, J. M. (1997) Network memory. Trends in Neurosciences 20: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Hare, M., Elman, J. L. and Daugherty, K. G. (1995) Default generalisation in connectionist networks. Language and Cognitive Processes 10: 601–630.

    Google Scholar 

  • Harris, Z. S. (1951) Structural linguistics. Chicago University Press, Chicago.

    Google Scholar 

  • Hauser, M. D., Chomsky, N. and Fitch, W. T. (2002) The faculty of language: what is it, who has it, and how did it evolve? Science 298: 1569–79.

    Article  PubMed  CAS  Google Scholar 

  • Heck, D. (1993) Rat cerebellar cortex in vitro responds specifically to moving stimuli. Neuroscience Letters 157: 95–98.

    Article  PubMed  CAS  Google Scholar 

  • Heck, D. and Sultan, F. (2002) Cerebellar structure and function: making sense of parallel fibers. Hum Mov Sci 21: 411–21.

    Article  PubMed  Google Scholar 

  • Hubel, D. (1995) Eye, brain, and vision, 2 edition. Scientific American Library, New York.

    Google Scholar 

  • Joshi, A. (1990) Processing crossed and nested dependencies: an automaton perspective on the psycholinguistic results. Language and Cognitive Processes 5: 1–28.

    Google Scholar 

  • Kleene, S. C. (1956) Representation of events in nerve nets and finite automata. In Automata studies (ed. C. E. Shannon and J. McCarthy), pp. 3–41. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • McCulloch, W. S. and Pitts, W. H. (1943) A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: 115–133.

    Article  Google Scholar 

  • Milner, P. M. (1957) The cell assembly: Mk. II. Psychological Review 64: 242–52.

    Article  PubMed  CAS  Google Scholar 

  • Milner, P. M. (1999) The autonomous brain. Laurence Erlbaum Associates, Mahwah, NJ.

    Google Scholar 

  • Page, M. P. and Norris, D. (1998). The primacy model: a new model of immediate serial recall. Psychological Review 105: 761–781.

    Article  PubMed  CAS  Google Scholar 

  • Palm, G. (1980) On associative memory. Biol Cybern 36: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Palm, G. (1982) Neural assemblies. Springer, Berlin.

    Google Scholar 

  • Palm, G. (1993) On the internal structure of cell assemblies. In Brain theory: spatio-temporal aspects of brain function (ed. A. Aertsen), pp. 261–270. Elsevier, Amsterdam.

    Google Scholar 

  • Pinker, S. and Ullman, M. (2002) Combination and structure, not gradedness, is the issue. Trends Cogn Sci 6: 472–474.

    Article  PubMed  Google Scholar 

  • Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H. and Abeles, M. (1998) Spatiotemporal structure of cortical activity: properties and behavioral relevance. J Neurophysiol 79: 2857–74.

    PubMed  CAS  Google Scholar 

  • Pulvermüller, F. (1993) On connecting syntax and the brain. In Brain theory - spatio-temporal aspects of brain function (ed. A. Aertsen), pp. 131–145. Elsevier, New York.

    Google Scholar 

  • Pulvermüller, F. (1998) On the matter of rules. Past tense formation as a test-case for brain models of language. Network: Computation in Neural Systems 9: R 1–51.

  • Pulvermüller, F. (1999) Words in the brain’s language. Behavioral and Brain Sciences 22: 253–336.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2001) Brain reflections of words and their meaning. Trends in Cognitive Sciences 5: 517–524.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2002) A brain perspective on language mechanisms: from discrete neuronal ensembles to serial order. Progress in Neurobiology 67: 85–111.

    Article  PubMed  Google Scholar 

  • Pulvermüller, F. (2003) The neuroscience of language. Cambridge University Press, Cambridge.

    Google Scholar 

  • Reichardt, W. and Varju, D. (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen. Zeitschrift für Naturforschung 14b: 674–689.

    PubMed  CAS  Google Scholar 

  • Rumelhart, D. E. and McClelland, J. L. (1987) Learning the past tense of English verbs: implicit rules or parallel distributed processing. In Mechanisms of language acquisition (ed. B. MacWhinney). Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Sakurai, Y. (1999) How do cell assemblies encode information in the brain? Neurosci Biobehav Rev 23: 785–96.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, F. T. and Wennekers, T. (2001) Associative memory in networks of spiking neurons. Neural Netw 14: 825–34.

    Article  PubMed  CAS  Google Scholar 

  • Varju, D. and Reichardt, W. (1967) Übertragungseigenschaften im Auswertesystem für das Bewegungssehen II. Zeitschrift für Naturforschung 22b: 1343–1351.

    Google Scholar 

  • Willshaw, D. J. (1972) A simple network capable of inductive generalization. Proc R Soc Lond B Biol Sci 182: 233–47.

    Article  PubMed  CAS  Google Scholar 

  • Willshaw, D. J., Buneman, O. P. and Longuet-Higgins, H. C. (1969) Non-holographic associative memory. Nature 222: 960–2.

    Article  PubMed  CAS  Google Scholar 

  • Young, M. P., Scannell, J. W. and Burns, G. (1995) The analysis of cortical connectivity. Springer, Heidelberg.

    Google Scholar 

  • Zipser, D., Kehoe, B., Littlewort, G. and Fuster, J. (1993) A spiking network model of short-term active memory. Journal of Neuroscience 13: 3406–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann Pulvermüller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pulvermüller, F. Sequence detectors as a basis of grammar in the brain. Theory Biosci. 122, 87–103 (2003). https://doi.org/10.1007/s12064-003-0039-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0039-6

Key words