Skip to main content

Advertisement

Log in

Macroscopic electrical activity as a conceptual framework in cognitive neuroscience

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

This report has the aim to indicate relevant implications of the systems theory approach to the experiments in conscious brain. The reports related to comparative neurophysiology and to the understanding of brain as a ‘whole’ are rare, an outstanding comparative approach report in biological sciences was that of Darwin, who performed a voyage in order to compare structures of species and the principle of natural selectivity.

In despite of the fruitful approach of Darwin, most of the brain scientists do prefer to analyze either one type of brain or even only one structure to interpret the brain function. The single neuron doctrine developed by Sherrington also did not consider these various aspects. The avenue opened by Hans Berger which introduced the analysis of the brain oscillations was an important step towards understanding of the ‘whole brain’.

In this report we aim to describe narratively, technical, strategical and philosophical steps to bridge “Sherrington Neuron Doctrine” with the “Neurons-Brain Theory” of the whole brain by means of the method developed by Hans Berger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, E. D. (1941) “Afferent discharges to the cerebral cortex from peripheral sense organs”, J. Physiol. (Lond.) 100, 159–191.

    CAS  Google Scholar 

  • Albright, T. D., Kandel, E. R., Posner, M. I. (2000) “Cognitive neuroscience”, Curr Opin Neurobiol. 10(5), 612–624.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H. B. (1972) “Single Units and Sensation: A neuron doctrine for perceptual psychology”, Perception 1, 371–394.

    Article  PubMed  CAS  Google Scholar 

  • Başar E. (1976) Biophysical and Physiological Systems Analysis, Addison Wesley, Reading, Massachusetts.

    Google Scholar 

  • Başar E. (1980) EEG-Brain Dynamics, Elsevier, Amsterdam.

    Google Scholar 

  • Basar, E. (ed.) (1990) Chaos in Brain Function, Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Başar, E. (1998) Brain Function and Oscillations. I. Brain Oscillations: Principles and Approaches, Berlin, Heidelberg, Springer.

    Google Scholar 

  • Başar, E. (1999) Brain Function and Oscillations. II. Integrative Brain Function. Neurophysiology and Cognitive Processes, Springer, Berlin, Heidelberg.

    Google Scholar 

  • Başar, E.; Başar-Eroğlu, C.; Karakaş, S.; Schürmann, M. (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol. 39: 241–248.

    Article  PubMed  Google Scholar 

  • Başar, E.; Demiralp, T.; Schürmann, M.; Başar-Eroğlu, C.; Ademoğlu, A. (1999) Oscillatory brain dynamics, wavelet analysis, and cognition. Brain Lang. 66: 146–183.

    Article  PubMed  Google Scholar 

  • Başar, E.; Özgören, M.; Karakaş, S. (2001) A Brain Theory Based on Neural Assemblies and Superbinding. In: Reuter, H.; Schwab, P.; Kleiber, D., Gniech, G. (eds) Wahrnehmen und Erkennen. PABST Science Publishers, Lengerich, pp 11–24.

    Google Scholar 

  • Başar, E.; Özgören, M.; Karakaş, S. (2001) Superbinding in integrative brain function and memory. In: Proceedings, 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

  • Başar, E.; Özgören, M.; Başar-Eroğlu, C.; Karakaş, S. (2002) Superbinding: Spatio-Temporal Oscillatory Dynamics versus Sherrington’s Neuron Doctrine. Theory in Biosciences (submitted).

  • Başar-Eroğlu, C.; Başar, E.; Demiralp, T.; Schürmann, M. (1992) P300-response: possible psychophysiological correlates in delta and theta frequency channels, A review. Int. J. Psychophysiol. 13: 161–179.

    Article  PubMed  Google Scholar 

  • Berger, H. (1929) Über das Elektroenzephalogramm des Menschen. 1. Bericht. Arch. Psychiat. Nervenkr. 87: 527–570.

    Article  Google Scholar 

  • Damasio, A. R.; Damasio, H. (1994) Cortical systems for retrieval of concrete knowledge: the convergence zone framework. In: C. Koch; J.L. Davis (eds) Large-Scale Neuronal Theories of the Brain, MIT Press, Cambridge, MA, pp 61–74.

    Google Scholar 

  • Dinse, H. R.; Krüger, K.; Akhavan, A. C.; Spengler, F.; Schöner, G.; Schreiner, C. E. (1997) Low-frequency oscillations of visual, auditory and somatosensory cortical neurons evoked by sensory stimulation. Int. J. Psychophysiol. 26: 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Duke, D.; Pritchard, W. (1991) Measuring Chaos in the Human Brain, World Scientific, Singapore.

    Google Scholar 

  • Eckhorn, R.; Bauer, R.; Jordan, R.; Brosch, W.; Kruse, M.; Munk, M.; Reitboeck, H.J. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern. 60: 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Fessard, A. (1961) The role of neuronal networks in sensory communications within the brain. In: Rosenblith, W. A. (ed) Sensory communication, Boston, MIT Press.

    Google Scholar 

  • Freeman, W.J. (ed.) (1975) Mass Action in the Nervous System, Academic Press, New York.

    Google Scholar 

  • Freeman, W.J. (1998) Preface. In: Başar, E. Brain Function and Oscillations, Berlin, Heidelberg, Springer.

    Google Scholar 

  • Fuster, J. M. (1995) Memory in the cortex of the primate. Biol. Res. 28: 59–72.

    PubMed  CAS  Google Scholar 

  • Fuster, J. M. (1997) Network Memory. Trends Neurosci. 20: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. (1988) Topography of cognition: Parallel distributed networks in primate association cortex. Ann. Rev. Neurosci. 11: 137–156.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. (1997) Space and time in the mental universe. Nature 386: 559–560.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M.; Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA. 86: 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, J. S. (1971) Mathematical Neurobiology. An Introduction to the Mathematics of the Nervous System, Academic Press, New York.

    Google Scholar 

  • Haken, H. (1977) Synergetics. An introduction, Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Hayek, F. A. (1952) The sensory order, University of Chicago Press.

  • Hebb, D. O. (1949) The organization of behaviour, Wiley, New York.

    Google Scholar 

  • John, E. R. (1988) Electrophysiological and radiographic evidence for the mediation of memory by an anatomically distributed system. In: Başar, E. (ed) Dynamics of Sensory and Cognitive Processing by the Brain, Springer, Berlin, Heidelberg, New York, pp. 56–87.

    Google Scholar 

  • Kocsis, B., Viana Di Prisco, G., Vertes, R. P. (2001) Theta synchronization in the limbic system: The role of Gudden’s tegmental nuclei. European Journal of Neuroscience. 13(2): 381–388.

    Article  PubMed  CAS  Google Scholar 

  • Lashley, K. S. (1929) Brain Mechanisms and Intelligence: A quantitative Study of Injuries to the Brain, Chicago, University of Chicago Press.

    Google Scholar 

  • Lehnertz, K.; Arnhold, J.; Grassberger, P.; Elger, C. E. (eds.) (1999) Chaos in Brain? World Scientific, Singapore.

    Google Scholar 

  • Llinás, R. R. (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242: 1654–1664.

    Article  PubMed  Google Scholar 

  • Mesulam, M. M. (1990) Large scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28: 597–613.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1994) Neurocognitive networks and selectively distributed processing. Rev. Neurol. (Paris) 150: 564–569.

    CAS  Google Scholar 

  • Molnár, M. (1999) Brain complexity as revealed by non-linear and linear electrophysiology. International Journal of Psychophysiology 1: 1–3.

    Article  Google Scholar 

  • Mountcastle, V. B.; (1992) Preface. In: Başar, E.; Bullock, T. H. (eds.) Induced Rhythms in the Brain. Birkhäuser, Boston, MA, pp 217–231.

    Google Scholar 

  • Quiroga, R. Q.; Rosso, O. A.; Başar, E. (1999) Wavelet entropy: a measure of order in evoked potentials. Electrenceph. Clin. Neurophysiol. Suppl. 49: 299–303.

    Google Scholar 

  • Quiroga, R. Q.; Rosso, O. A.; Basar, E.; Schürmann, M. (2001) Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol Cybern. 84: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Rosen, R. (1969) Hierarchical organization in automata theoretic models of the central nervous system. In: Leibovic, K. N. (ed) Information processing in the nervous system, Springer, Berlin Heidelberg, New York.

    Google Scholar 

  • Rosso, O. A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola, A.; Schürmann, M.; Başar, E. (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods. 105: 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Schürmann, M.; Demiralp, T.; Başar, E.; Başar-Eroğlu, C. (2000) Electroencephalogram alpha (8–15 Hz) responses to visual stimuli in cat cortex, thalamus, and hippocampus: a distributed alpha network? Neurosci Lett. 292: 175–178.

    Article  PubMed  Google Scholar 

  • Sherrington, C. (1948) The Integrative Action of the Nervous System, Cambridge University Press.

  • Sokolov, E. N. (2001) In: Başar, E., Schürmann, M. Toward new theories of Brain function and brain dynamics. Int. J. Psychophysiol. 39: 87–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Başar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Özgören, M., Başar, E. Macroscopic electrical activity as a conceptual framework in cognitive neuroscience. Theory Biosci. 121, 351–369 (2003). https://doi.org/10.1007/s12064-003-0042-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0042-y

Key words

Navigation