Skip to main content
Log in

Superbinding: Spatio-temporal oscillatory dynamics

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

This paper presents superbinding, a concept that represents integrative oscillatory dynamics over the time and space axes. Principle of superposition describes integration over the temporal axis; selectively distributed and selectively coherent oscillatory neural populations describe integration over the spatial axis. Integrative activity is a function of the coherences between spatial locations of the brain; these coherences vary according to the type of sensory and or cognitive event and possibly the consciousness state of the species. Complex percepts and integrative activity in general that is achieved by superbinding supported by the neurons-brain theory may replace the Sherringtonian integrative brain function that is achieved through the single neuron doctrine.

Results of recent experiments related to the percept of the grandmother-face support our concept of super-synergy in the whole brain in order to explain manifestation of Gestalts and Memory-Stages. The strategies of the Grandmother paradigm may open new horizons in search of memories or evolving memories, and possibly provide relevant clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeles, M.; Prut, Y. (1996) Spatio-temporal firing pattern in the frontal cortex of behaving monkeys. J. Physiology 90: 249–250.

    CAS  Google Scholar 

  • Barlow, H. B.; (1995) The neuron doctrine in perception. In: M. Gazzaniga (ed) The Cognitive Neurosciences, Vol. 1, Cambridge, MIT Press, 1995, pp 415–436.

    Google Scholar 

  • Başar, E. (1980) EEG-Brain Dynamics: Relation Between EEG and Brain Evoked Potentials, Elsevier, Amsterdam.

    Google Scholar 

  • Başar, E. (1999) Brain Function and Oscillations, II. Integrative Brain Function - Neurophysiology and Cognitive Processes, Springer, Berlin.

    Google Scholar 

  • Başar, E.; Başar-Eroğlu, C.; Karakaş, S.; Schürmann, M. (1999) Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neurosci. Lett. 259: 165–168.

    Article  PubMed  Google Scholar 

  • Başar, E.; Başar-Eroğlu, C.; Karakaş, S.; Schürmann, M. (2000) Brain oscillations in perception and memory. Int. J. Psychophysiol. 35: 95–124.

    Article  PubMed  Google Scholar 

  • Başar, E.; Hai, R.; Lopes da Silva, F. H.; Schürmann, M. (eds) (1997) Brain Alpha Activity — New Aspects and Functional Correlates. Int. J. Psychophysiol. 26: 1–482.

  • Başar, E.; Özgören, M.; Karakaş, S. (2001) A Brain Theory Based on Neural Assemblies and Superbinding. In: Reuter, H.; Schwab, P.; Kleiber, D., Gniech, G. (eds) Wahrnehmen und Erkennen. PABST Science Publishers, Lengerich, pp 11–24.

    Google Scholar 

  • Başar, E.; Özgören, M.; Karakaş, S.; Başar-Eroğlu, C. (2002) Super-synergy in Brain oscillations and the grandmother percept. Int. J. Bifurcation and Chaos (submitted).

  • Berger, H. (1929) Über das Elektroenzephalogramm des Menschen, Bericht, Arch. Psychit. Nervenk 87: 27–570.

    Google Scholar 

  • Bullock, T. H.; McClune, M. C. (1989) Lateral coherence of the electrocorticogram: a new measure of brain synchrony. EEG and clinical Neurophysiol. 73: 479–498.

    Article  CAS  Google Scholar 

  • Chen, A. C. N.; Herrmann, C. S. (2001) Perception of pain coincides with the spatial expansion of electroencephalographic dynamics in human subjects. Neurosci. Lett. 297: 183–186.

    Article  PubMed  CAS  Google Scholar 

  • Courtney, S. M.; Ungerleider, L. G.; Keil, K.; Haxby, J. V. (1997) Transient and sustained activity in a distributed neural system for human working memory. Nature 386: 608–611.

    Article  PubMed  CAS  Google Scholar 

  • Crick, F.; Koch, C. (1998) Consciousness and neuroscience. Cerbral Cortex 8: 97–107.

    Article  CAS  Google Scholar 

  • Doppelmayr, M.; Kbimesch, W.; Schwaiger, J.; Stadler, W.; Röhm, D. (2000) The time locked theta response reflects interindividual diferences in human memory performance. Neuroscience Letters 278: 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Eckhorn, R.; Bauer, R.; Jordan, R.; Brosch, W.; Kruse, M.; Munk, M.; Reitboeck, H. J. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol. Cybern. 60: 121–130.

    Article  PubMed  CAS  Google Scholar 

  • Engel, A. K.; Fries, P.; Singer, W. (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nature Rev. Neuroscience 2: 704–716.

    Article  CAS  Google Scholar 

  • Fuster, J. M. (1997) Network Memory. Trends Neurosci. 20: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Gray, C. M.; Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA. 86: 1698–1702.

    Article  PubMed  CAS  Google Scholar 

  • Grossberg, S. (1999) The link between brain learning, attention, and consciousness. Conscious Cogn. 8(1): 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Haenschel, C.; Baldeweg, T.; Croft, R. J.; Whittington, M.; Gruzelier, J. (2000) Gamma and beta frequency oscillations in response to novel auditory stimuli: A comparison of human electroencephalogram (EEG) data with in vitro models. Proc. Natl. Acad. Sci. USA 97(13): 7645–7650.

    Article  PubMed  CAS  Google Scholar 

  • Hebb, D. O. (1949) The organization of behaviour, Wiley, New York.

    Google Scholar 

  • Karakaş, S.; Erzengin, O. U.; Başar, E. (2000) The genesis of human event-related responses explained through the theory of oscillatory neural assemblies. Neurosci. Lett. 285(1): 45–48.

    Article  PubMed  Google Scholar 

  • Kiss, T.; Orban G.; Lengyel M.; Erdi P. (2001) Intrahippocampal gamma and theta rhythm generation in a network model of inhibitory interneurons. Neurocomputing 38–40: 713–719.

    Article  Google Scholar 

  • Klimesch, W.; Doppelmayr, M.; Pöllhuber, D.; Stadler, W. (2000) Simultaneous desynchronization and synchronization of different alpha responses in the human electroencephalograph: a neglected paradox? Neurosci. Lett. 284: 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis, B.; Viana, Di Prisco G.; Vertes, R. P. (2001) Theta synchronization in the limbic system: The role of Gudden’s tegmental nuclei. European J. Neuroscience 13(2): 381–388.

    Article  CAS  Google Scholar 

  • Miltner, W.; Braun, C.; Arnold, M.; Witte, H.; Taub, E. (1999) Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397: 434–436.

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle, V. B. (1998) Perceptual Neuroscience. The Cerebral Cortex, Harvard University Press.

  • Pulvermuller, F.; Preissl, H.; Lutzenberger, W.; Birbaumer, N. (1996) Brain rhythms of language: nouns versus verbs. The European Journal of Neuroscience 8: 937–941.

    Article  PubMed  CAS  Google Scholar 

  • Quiroga, R Q.; Rosso, O. A.; Başar, E. (1999) Wavelet entropy: a measure of order in evoked potentials. Electrenceph. Clin. Neurophysiol. Suppl. 49: 299–303.

    Google Scholar 

  • Sakowitz, O. W.; Quiroga, R. Q.; Schürmann, M.; Başar, E. (2001) Bisensory stimulation increases gammaresponses over multiple cortical regions. Cognitive Brain Res. 11: 267–279.

    Article  CAS  Google Scholar 

  • Schürmann, M.; Demiralp, T.; Başar, E.; Başar-Eroğlu, C. (2000) Electroencephalogram alpha (8–15) responses to visual stimuli in dat cortex, thalamus, and hippocampus: a distributed alpha network? Neurosci. Lett., 292: 175–178.

    Article  PubMed  Google Scholar 

  • Schütt, A.; Başar, E.; Bullock, T. H. (1992) The effects of acetylcholine, dopamine and noradrenaline on the visceral ganglion of Helix pomatia. 1. Ongoing compound field potentials of low frequencies. Comp Biochem Physiol C. 102(1): 159–168.

    Article  PubMed  Google Scholar 

  • Sherrington, C. (1948) The Integrative Action of the Nervous System. Cambridge University Press.

  • Stryker, M. P. (1989) Is grandmother an oscillation? Nature, 338: 297–298.

    Article  PubMed  CAS  Google Scholar 

  • Tallon-Baudry, C.; Bertrand, O.; Peronnet, F.; Pernier, J. (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 18: 4244–4254.

    PubMed  CAS  Google Scholar 

  • Yordanova, J.; Kolev, V.; Rosso, O. A.; Schürmann, M.; Sakowitz, O. W.; Özgören, M.; Başar, E. (2002) Wavelet entropy analysis of event-related potentials indicates modality-independent theta dominance. Journal of Neuroscience Methods (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erol Başar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Başar, E., Özgören, M., Başar-Eroğlu, C. et al. Superbinding: Spatio-temporal oscillatory dynamics. Theory Biosci. 121, 371–386 (2003). https://doi.org/10.1007/s12064-003-0043-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0043-x

Key words

Navigation