Skip to main content
Log in

Maintaining heritable variation via sex-limited temporally fluctuating selection: a phenotypic model accommodating non-Mendelian epigenetic effects

  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Summary

Using a phenotypic model, we show that significant heritable variation can be maintained in a population subjected to temporally fluctuating selection if only one sex is subject to selection. In fact, more variation is maintained with sex-limited selection at a given selection intensity than if both sexes are subject to half that selection intensity. This result is commensurate with existing population genetic models. However, genetic models may be inappropriate for sexually selected traits because many of them may be of non-genetic origin, such as maternal effects or — more likely — epigenetic effects. Phenotypic models obviate this problem by accommodating both genetic and epigenetic effects, as well as maternal effects. Our phenotypic model of sex-limited temporally fluctuating selection shows that substantial heritable variation can be maintained and thereby provides impetus to develop population epigenetic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airey, D. C.; Castillo-Juarez, H.; Casella, G.; Pollak, E. J.; DeVoogd, T. J. (2000) Variation in the volume of zebra finch song control nuclei is heritable: developmental and evolutionary implications. Proc. R. Soc. Lond. Ser. B. 267: 2099–2104.

    Article  CAS  Google Scholar 

  • Bertram, S. M. (1999) Understanding intrapopulation variation in the mating behavior of a field cricket. Dissertation, Arizona State University, Tempe, pp 92.

    Google Scholar 

  • Bertram, S. M. (2002) Temporally fluctuating selection of sex-limited signaling traits in the Texas field cricket, Gryllus texensis. Evolution 56: 1831–1839.

    PubMed  Google Scholar 

  • Boyes, J.; Bird, A. (1992) Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11: 327–333.

    PubMed  CAS  Google Scholar 

  • Chandra, H. S. (1985) Is human X chromosome inactivation a sex-determining device? Proc. Natl. Acad. Sci. USA 82: 6947–6949.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. (1984) The evolutionary genetics of life histories. In: Shorrocks, B. (ed) Evol. Ecol. Blackwell, Oxford, pp 117–133.

    Google Scholar 

  • Charlesworth, B. (1987) The heritability of fitness. In: Bradbury, J. W.; Andersson, M. B. (eds) Sexual selection: testing the alternatives. Wiley, Chichester, U.K., pp 21–40.

    Google Scholar 

  • Charlesworth, B. (1991) The evolution of sex chromosomes. Science 251: 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Cheptou P. O.; Mathias, A. (2001) Can varying inbreeding depression select for intermediary selfing rates? Am. Nat. 157: 361–373.

    Article  PubMed  CAS  Google Scholar 

  • Chorney, M. J.; Chorney, K.; Seese, N.; Owen, M. J.; Daniels, J.; McGuffin, P.; Thompson, L. A.; Detterman, D.K.; Benbow, C.; Lubinski, D.; Eley, T.; Plomin, R. (1998) A quantitative trait locus associated with cognitive ability in children. Psychol. Sci. 9: 159–166.

    Article  Google Scholar 

  • Crouse, H. V. (1960) The controlling element in sex chromosome behavior in Sciara. Genetics 45: 1429–1443.

    PubMed  CAS  Google Scholar 

  • Cubas, P.; Vincent, C.; Coen, E. (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Demeulemeester, M. A. C.; Van Stallen, N.; De Proft, M. P. (1999) Degree of DNA methylation in chicory (Cichorium intybus L.): influence of plant age and vernalization. Plant Sci. 142: 101–108.

    Article  CAS  Google Scholar 

  • Dempster, E. R. (1955) Maintenance of genetic heterogeneity. Quant. Biol. 20: 25–32.

    CAS  Google Scholar 

  • Derreumaux S.; Chaoui, M.; Tevanian, G.; Fermandjian, S. (2001) Impact of CpG methylation on structure, dynamics and solvation of cAMP DNA responsive element. Nucleic Acids Res. 29: 2314–2326.

    Article  PubMed  CAS  Google Scholar 

  • Ellner, S. (1996) Environmental fluctuations and the maintenance of genetic diversity in age or stage-structured populations. Bull. Math. Biol. 58: 103–127.

    Article  PubMed  CAS  Google Scholar 

  • Ellner, S.; Hairston, N. G. (1994) Role of overlapping generations in maintaining genetic variation in a fluctuating environment. Am. Nat. 143: 403–417.

    Article  Google Scholar 

  • Ellner, S.; Sasaki, A. (1996) Patterns of genetic polymorphism maintained by fluctuating selection with overlapping generations. Theor. Popul. Biol. 50: 31–65.

    Article  PubMed  CAS  Google Scholar 

  • Ellner, S. P.; Hairston, N. G.; Kearns, C. M.; Babai, D. (1999) The roles of fluctuating selection and long-term diapause in microevolution of diapause timing in a freshwater copepod. Evolution 53: 111–122.

    Article  Google Scholar 

  • Eshel, I.; Feldman, M. W. (1982) On evolutionary genetic stability of the sex ratio. Theor. Popul. Biol. 21: 430–439.

    Article  Google Scholar 

  • Eshel, I.; Feldman, M. W.; Bergman, A. (1998) Long-term evolution, short-term evolution, and population genetic theory. J. Theor. Biol. 191: 391–396.

    Article  Google Scholar 

  • Falconer, D. S. (1981) Introduction to quantitative genetics (2nd edition), vol 2. Ronald Press, London.

    Google Scholar 

  • Finnegan, E. J. (2002) Epialleles: a source of random variation in times of stress. Curr. Opin. Plant Biol. 5: 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, R. A. (1930) The genetical theory of natural selection. Clarendon Press, Oxford.

    Google Scholar 

  • Gahr, M.; Metzdorf, R. (1999) The sexually dimorphic expression of androgen receptors in the song nucleus hyperstriatalis ventrale pars caudale of the zebra finch develops independently of gonadal steroids. J. Neurosci. 19: 2628–2636.

    PubMed  CAS  Google Scholar 

  • Giancotti, P.; Grappelli, C.; Poggesi, I.; Abatecola, M.; de Capoa, A.; Cozzi, R.; Perticone, P. (1995) Persistence of increased levels of ribosomal gene activity in CHO-K1 cells treated in vitro with demethylating agents. Mutat. Res. Lett. 348: 187–192.

    Article  CAS  Google Scholar 

  • Gillespie, J. H. (1982) A randomized SAS CFF model of natural selection in a random environment. Theor. Popul. Biol. 21: 219–237.

    Article  Google Scholar 

  • Gillespie, J. H. (1989) Could natural selection account for molecular evolution and polymorphism? Genome 31: 311–315.

    PubMed  CAS  Google Scholar 

  • Gorelick, R. (In press) Confounding comparative epigenomics. Genome Res.

  • Gorelick, R. (2003) Evolution of dioecy and sex chromosomes via methylation driving Muller’s ratchet. Biol. J. Linn. Soc. 80: 353–368.

    Article  Google Scholar 

  • Gorelick, R.; Bertram, S. M. (submitted) Evolution of sexually dimorphic traits.

  • Gorelick, R.; Osborne, R. (2002) Inducing sex change and organogenesis from tissue culture in the endangered African cycad Encephalartos woodii (Cycadales, Zamiaceae). S. Afr. J. Sci. 98: 114–117.

    CAS  Google Scholar 

  • Haig, D. (2000) Genomic imprinting, sex-biased dispersal, and social behavior. In: LeCroy, D.; Moller, P. (eds) Ann. NY Acad. Sci., vol 907. New York Academy of Sciences, New York, pp 149–163.

    Google Scholar 

  • Haldane, J. B. S. (1962) Conditions for stable polymorpisms at an autsomal locus. Nature 193: 1108.

    Article  PubMed  CAS  Google Scholar 

  • Haldane J. B. S.; Jayaker, S. D. (1963) Polymorphism due to selection of varying direction. J. Genetics 58: 237–242.

    Article  Google Scholar 

  • Hedrick, P. W. (1986) Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17: 535–566.

    Article  Google Scholar 

  • Hoeh, W. R.; Stewart, D. T.; Sutherland, B. W.; Zouros, E. (1996) Multiple origins of gender-associated mitochondrial DNA lineages in bivalves (Mollusca: Bivalvia). Evolution 50: 2276–2286.

    Article  CAS  Google Scholar 

  • Holliday, R.; Pugh, J. E. (1975) DNA modification mechanisms and gene activity during development. Science 187: 226–232.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D. (1992) Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.

    PubMed  CAS  Google Scholar 

  • Isles, A. R.; Wilkinson, L.S. (2000) Imprinted genes, cognition and behaviour. Trends Cogn. Sci. 4: 309–318.

    Article  PubMed  Google Scholar 

  • Jost, J. P.; Saluz, H. P. (1993) DNA methylation: molecular biology and biological significance. In. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Kidwell, J. F.; Clegg, M. T.; Stewart, F. M.; Prout, T. (1977) Regions of stable equilibria for models of differential selection in the two sexes under random mating. Genetics 85: 171–183.

    PubMed  CAS  Google Scholar 

  • Kimura M. (1954) Processes leading to the quasi-fixation of genes in natural populations due to random fluctuation of selection intensities. Genetics 39: 280–295.

    PubMed  CAS  Google Scholar 

  • Lefebvre, L.; Viville, S.; Barton, S. C.; Ishino, F.; Keverne, E. B.; Surani, M. A. (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nature Genet. 20: 163–169.

    Article  PubMed  CAS  Google Scholar 

  • Li, C. C. (1963) Equilibrium under differential selection in the sexes. Evolution 17: 493–496.

    Article  Google Scholar 

  • LoSchiavo, F.; Pitto, L.; Giuliano, G.; Torti, G.; Nuti-Ronchi, V.; Marazziti, D.; Vergara, R.; Orsdelli, S.; Terzi, M. (1989) DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 77: 325–331.

    Article  CAS  Google Scholar 

  • Marec, F.; Novák, K. (1998) Absence of sex chromatin corresponds with a sex-chromosome univalent in females of Trichoptera. European Journal of Entomology 95: 197–209.

    Google Scholar 

  • McLachlan, J. A.; Newbold, R. R.; Li, S. F.; Negishi, M. (1998) Are estrogens carcinogenic during development of the testes? APMIS 106: 240–242.

    Article  PubMed  CAS  Google Scholar 

  • Mogensen, H. L. (1996) The hows and whys of cytoplasmic inheritance in seed plants. Am. J. Bot. 83: 383–404.

    Article  Google Scholar 

  • Müller, G. B.; Newman, S. A. (1999) Generation, integration, autonomy: three steps in the evolution of homology. In: Bock, G. R.; Cardew, G. (eds) Homology. Wiley, Chichester, pp 65–79.

    Google Scholar 

  • Owens, A. R. G. (1953) A genetical system admitting of two distinct stable equilibria under natural selection. Heredity 7: 97–102.

    Google Scholar 

  • Pardo-Manuel de Villena, F.; de la Casa-Esperón, E.; Sapienza, C. (2000) Natural selection and the function of genome imprinting: beyond the silenced minority. Trends Genet. 16: 573–579.

    Article  PubMed  CAS  Google Scholar 

  • Passamonti, M.; Scali, V. (2001) Gender-associated mitochondrial DNA heteroplasmy in the venerid clam Tapes philippinarum (Mollusca Bivalvia). Curr. Genet. 39: 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Pomiankowski, A.; Møller, A. P. (1995) A resolution of the lek paradox. Proc. R. Soc. Lond. Ser. B 260: 21–29.

    Article  Google Scholar 

  • Razin, A.; Cedar, H. (1991) DNA methylation and gene expression. Microbiol. Rev. 55: 451–458.

    PubMed  CAS  Google Scholar 

  • Reinhold, K. (1998) Sex linkage among genes controlling sexually selected traits. Behav. Ecol. Sociobiol. 44: 1–7.

    Article  Google Scholar 

  • Reinhold, K. (1999) Evolutionary genetics of sex limited traits under fluctuating selection. J. Evol. Biol. 12: 897–902.

    Article  Google Scholar 

  • Reinhold, K. (2000) Maintenance of a genetic polymorphism by fluctuating selection on sex-limited traits. J. Evol. Biol. 13: 1009–1014.

    Article  Google Scholar 

  • Russo, V. E. A.; Martienssen, R.; Riggs, A. D. (1996) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Sasaki, A.; de Jong, G. (1999) Density dependence and unpredictable selection in a heterogeneous environment: Compromise and polymorphism in the ESS reaction norm. Evolution 53: 1329–1342.

    Article  Google Scholar 

  • Sasaki, A.; Ellner, S. (1995) The evolutionarily stable phenotype distribution in a random environment. Evolution 49: 337–350.

    Article  Google Scholar 

  • Sasaki, A.; Ellner, S. (1997) Quantitative genetic variance maintained by fluctuating selection with overlapping generations: Variance components and covariances. Evolution 51: 682–696.

    Article  Google Scholar 

  • Schlichting, C. D.; Pigliucci, M. (1998) Phenotypic evolution: a reaction norm perspective. Sinauer, Sunderland.

    Google Scholar 

  • Shannon C. E.; Weaver, W. (1949) The mathematical theory of communication. University of Illinois Press, Urbana.

    Google Scholar 

  • Stewart, D. T.; Kenchington, E. R.; Singh, R. K.; Zouros, E. (1996) Degree of selective constraint as an explanation of the different rates of evolution of gender-specific mitochondrial DNA lineages in the mussel Mytilus. Genetics 143: 1349–1357.

    PubMed  CAS  Google Scholar 

  • Tatra, G. S.; Miranda, J.; Chinnappa, C. C.; Reid, D. M. (2000) Effect of light quality and 5-azacytidine on genomic methylation and stem elongation in two ecotypes of Stellaria longipes. Physiol. Plant. 109: 313–321.

    Article  CAS  Google Scholar 

  • Van Speybroeck, L. (2000) The organism: a crucial genomic context in molecular epigenetics? Theory Biosci. 119: 187–208.

    Article  Google Scholar 

  • Whitelaw, E.; Martin, D. I. K. (2001) Retrotransposons as epigenetic mediators of phenotypic variation in mammals. Nature Genet. 27: 361–365.

    Article  PubMed  CAS  Google Scholar 

  • Whittle, C.-A.; Johnston, M. O. (2002) Male-driven evolution of mitochondrial and chloroplastidial DNA sequences in plants. Mol. Biol. Evol. 19: 938–949.

    PubMed  CAS  Google Scholar 

  • Wolf, J. B.; Frankino, W. A.; Agrawal, A. F.; Brodie, E. D.; Moore, A. J. (2001) Developmental interactions and the constituents of quantitative variation. Evolution 55: 232–245.

    PubMed  CAS  Google Scholar 

  • Zouros, E.; Ball, A. O.; Saavedra, C.; Freeman, D. C. (1994) Mitochondrial DNA inheritance. Nature 359: 818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Root Gorelick.

Additional information

Both authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorelick, R., Bertram, S.M. Maintaining heritable variation via sex-limited temporally fluctuating selection: a phenotypic model accommodating non-Mendelian epigenetic effects. Theory Biosci. 122, 321–338 (2003). https://doi.org/10.1007/s12064-003-0061-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-003-0061-8

Key words