Skip to main content
Log in

A theoretical framework for β-glucan degradation during barley malting

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

During malting, barley germinates and produces hydrolytic enzymes that de-structure the endosperm, making the grains soft and friable. This process starts close to the embryo and spreads throughout the whole grain. It is leaded by the degradation of cell walls, which are mainly constituted of β-glucans. Fast and extended breakdown of β-glucans occurs by means of an expanding reaction front driven by β-glucanase, and appears to follow pseudo-first-order kinetics. Endosperm permeabilization to macromolecules is closely linked to the dismantling of cell walls, thus that access to β-glucans by β-glucanase itself is limited. It is shown that the kinetics of β-glucan degradation during malting are consequent to this condition, and can be explained according to an anomalous evolution of the reverse quasi-steady-state approximation (rQSSA) for enzymatic reactions. In fact, kinetics based on the rQSSA include a transient phase wherein fast substrate depletion is indeed of pseudo-first-order. In the germinating barley, the conditions in which the physical modification of the endosperm occurs are shown to be suitable for the fast transient to persist in dynamic equilibrium while it progressively expands throughout the grain, depleting most β-glucans and, then, establishing the overall kinetics of β-glucan breakdown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aastrup S, Erdal K (1980) Quantitative determination of endosperm modification and its relationship to the content of 1, 3:1, 4-β-glucans during malting of barley. Carlsberg Res Commun 45:369–379. doi:10.1007/BF02906161

    Article  CAS  Google Scholar 

  • Albe KR, Butler MH, Wright BE (1990) Cellular concentrations of enzymes and their substrates. J Theor Biol 143:163–195. doi:10.1016/S0022-5193(05)80266-8

    Article  PubMed  CAS  Google Scholar 

  • Basedow AM, Ebert KH (1979) Production, characterization, and solution properties of dextran fractions of narrow molecular weight distributions. J Polym Sci 66:101–115

    CAS  Google Scholar 

  • Beer MU, Wood PJ, Weisz J (1997) Molecular weight distribution and (1 → 3),(1 → 4)-β-d-glucan content of consecutive extracts of various oat and barley cultivars. Cereal Chem 74:476–480. doi:10.1094/CCHEM.1997.74.4.476

    Article  CAS  Google Scholar 

  • Boswell GP, Davidson FA (2007) Diffusion fronts in enzyme-catalysed reactions. J Eng Math 59:157–169. doi:10.1007/s10665-007-9142-x

    Article  CAS  Google Scholar 

  • Brennan CS, Amor MA, Harris N, Smith D, Cantrell I, Griggs D, Shewry PR (1997) Cultivar differences in modification patterns of protein and carbohydrate reserves during malting of barley. J Cereal Sci 26:83–93. doi:10.1006/jcrs.1996.0103

    Article  CAS  Google Scholar 

  • Brennan CS, Cleary LJ (2005) The potential use of cereal (1 → 3),(1 → 4)-β-d-glucans as functional food ingredients. J Cereal Sci 42:1–13. doi:10.1016/j.jcs.2005.01.002

    Article  CAS  Google Scholar 

  • Brennan CS, Harris N, Smith D, Shewry PR (1996) Structural differences in the mature endosperms of good and poor malting barley cultivars. J Cereal Sci 24:171–177. doi:10.1006/jcrs.1996.0050

    Article  Google Scholar 

  • Briggs DE (1972) Enzyme formation, cellular breakdown and the distribution of gibberellins in the endosperm of barley. Planta 108:351–358. doi:10.1007/BF00389312

    Article  CAS  Google Scholar 

  • Briggs DE (1998) Malts and malting. Blackie Academic and Professional, London

    Google Scholar 

  • Briggs DE (2002) Malt modification—a century of evolving views. J Inst Brew 108:395–405

    Google Scholar 

  • Briggs DE, MacDonald J (1983) Patterns of modification in malting barley. J Inst Brew 89:260–271

    Google Scholar 

  • Brown HT, Morris GH (1890) Researches on the germination of some of the gramineae. Part I. J Chem Soc Trans 57:458–528. doi:10.1039/ct8905700458

    Article  CAS  Google Scholar 

  • Carbonell JV, Izquierdo L, Sendra JM, Manzanares P (1998) A Monte Carlo simulation of the depolymerization of linear homopolymers by endo-enzymes exhibiting random-attack probability and single-attack mechanism: application to the (1 → 3),(1 → 4)-β-d-glucan/endo-(1 → 3),(1 → 4)-β-d-glucanase system. Biotechnol Bioeng 60:105–113. doi:10.1002/(SICI)1097-0290(19981005)60:1<105::AID-BIT12>3.0.CO;2-P

    Article  PubMed  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:1144–1147. doi:10.1126/science.205.4411.1144

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  • Darlington HF, Palmer GH (1996) Homogeneity of the friable flour of malting barley. J Inst Brew 102:179–182

    Google Scholar 

  • Fincher GB (1989) Molecular and cellular biology associated with endosperm mobilization in germinating cereal grains. Annu Rev Plant Physiol Plant Mol Biol 40:305–346. doi:10.1146/annurev.pp.40.060189.001513

    Article  CAS  Google Scholar 

  • Gianinetti A, Ferrari B, Frigeri P, Stanca AM (2007) In vivo modeling of β-glucan degradation in contrasting barley (Hordeum vulgare L.) genotypes. J Agric Food Chem 55:3158–3166. doi:10.1021/jf0636768

    Article  PubMed  CAS  Google Scholar 

  • Gianinetti A, Toffoli F, Cavallero A, Delogu G, Stanca AM (2005) Improving discrimination for malting quality in barley breeding programmes. Field Crops Res 94:189–200. doi:10.1016/j.fcr.2005.01.002

    Article  Google Scholar 

  • Gibbons GC (1980) On the sequential determination of α-amylase transport and cell wall breakdown in germinating seeds of Hordeum vulgare. Carlsberg Res Commun 45:177–184. doi:10.1007/BF02908044

    Article  CAS  Google Scholar 

  • Gómez C, Navarro A, Carbonell JV, Sendra JM (2000) Determination of the apparent molecular weight cut-off for the fluorimetric calcofluor-FIA method when detecting (1 → 3),(1 → 4)-β-d-glucan using a high ionic strength eluant. J Cereal Sci 31:155–157. doi:10.1006/jcrs.1999.0247

    Article  Google Scholar 

  • Gómez C, Navarro A, Manzanares P, Horta A, Carbonell JV (1997) Physical and structural properties of barley (1 → 3),(1 → 4)-β-d-glucan. Part I. Determination of molecular weight and macromolecular radius by light scattering. Carbohydr Polym 32:7–15. doi:10.1016/S0144-8617(96)00126-9

    Article  Google Scholar 

  • Hrmova M, Fincher GB (2001) Structure-function relationships of β-d-glucan endo- and exohydrolases from higher plants. Plant Mol Biol 47:73–91. doi:10.1023/A:1010619128894

    Article  PubMed  CAS  Google Scholar 

  • Irakli M, Biliaderis CG, Izydorczyk MS, Papadoyannis IN (2004) Isolation, structural features and rheological properties of water-extractable β-glucans from different Greek barley cultivars. J Sci Food Agric 84:1170–1178. doi:10.1002/jsfa.1787

    Article  CAS  Google Scholar 

  • Jensen LG (1994) Developmental patterns of enzymes and proteins during mobilization of endosperm stores in germinating barley grains. Hereditas 121:53–72. doi:10.1111/j.1601-5223.1994.00053.x

    Article  CAS  Google Scholar 

  • Jin Y-L, Speers RA, Paulson AT, Stewart RJ (2004) Barley β-glucans and their degradation during malting and brewing. Tech Q Master Brew Assoc Am 41:231–240

    CAS  Google Scholar 

  • Kanauchi M, Bamforth CW (2002) Enzymic digestion of walls purified from the starchy endosperm of barley. J Inst Brew 108:73–77

    CAS  Google Scholar 

  • Knuckles BE, Yokoyama WH, Chiu MM (1997) Molecular characterization of barley β-glucans by size-exclusion chromatography with multiple-angle laser light scattering and other detectors. Cereal Chem 74:599–604. doi:10.1094/CCHEM.1997.74.5.599

    Article  CAS  Google Scholar 

  • MacGregor AW, Dushnicky LG, Schroeder SW, Ballance GM (1994) Changes in barley endosperms during early stages of germination. J Inst Brew 100:85–90

    CAS  Google Scholar 

  • MacGregor AW, Fincher GB (1993) Carbohydrates of the barley grain. In: MacGregor AW, Bhatty RS (eds) Barley chemistry and technology. American Association of Cereal Chemists, St. Paul, pp 73–130

    Google Scholar 

  • Maini PK, Burke MA, Murray JD (1991) On the quasi-steady-state assumption applied to Michaelis-Menten and suicide substrate reactions with diffusion. Philos Trans R Soc Lond A 337:299–306. doi:10.1098/rsta.1991.0125

    Article  CAS  Google Scholar 

  • McEntyre E, Ruan R, Fulcher RG (1998) Comparison of water absorption patterns in two barley cultivars, using magnetic resonance imaging. Cereal Chem 75:792–795. doi:10.1094/CCHEM.1998.75.6.792

    Article  CAS  Google Scholar 

  • Morrall P, Briggs DE (1978) Changes in cell wall polysaccharides of germinating barley grains. Phytochemistry 17:1495–1502. doi:10.1016/S0031-9422(00)94628-4

    Article  CAS  Google Scholar 

  • Navarro A, Manzanares P, Carbonell JV, Sendra JM (1995) Determination of (1 → 3),(1 → 4)-β-d-glucanase activity by a calcofluor-flow injection analysis method. J Cereal Sci 22:275–284. doi:10.1006/jcrs.1995.0064

    Article  CAS  Google Scholar 

  • O’Brien R, Fowkes N (2005) Modification patterns in germinating barley—malting II. J Theor Biol 233:315–325. doi:10.1016/j.jtbi.2004.10.010

    Article  PubMed  Google Scholar 

  • Oh SY, Briggs DE (1989) Modification in malting barley. J Inst Brew 95:83–88

    Google Scholar 

  • Sattler W, Esterbauer H, Glatter O, Steiner W (1989) The effect of enzyme concentration on the rate of the hydrolysis of cellulose. Biotechnol Bioeng 33:1221–1234. doi:10.1002/bit.260331002

    Article  PubMed  CAS  Google Scholar 

  • Schnell S, Maini PK (2000) Enzyme kinetics at high enzyme concentration. Bull Math Biol 62:483–499. doi:10.1006/bulm.1999.0163

    Article  PubMed  CAS  Google Scholar 

  • Schnell S, Maini PK (2003) A century of enzyme kinetics: reliability of the KM and vmax estimates. Comments Theor Biol 8:169–187. doi:10.1080/08948550302453

    Article  Google Scholar 

  • Schnell S, Mendoza C (2004) The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration. Biophys Chem 107:165–174. doi:10.1016/j.bpc.2003.09.003

    Article  PubMed  CAS  Google Scholar 

  • Segel LA, Slemrod M (1989) The quasi-steady-state assumption: a case study in perturbation. SIAM Rev 31:446–477. doi:10.1137/1031091

    Article  Google Scholar 

  • Selvig A, Aarnes H, Lie S (1986) Cell wall degradation in endosperm of barley during germination. J Inst Brew 92:185–187

    Google Scholar 

  • Sendra JM, Carbonell JV (1998) A theoretical equation describing the time evolution of the concentration of a selected range of substrate molecular weights in depolymerization processes mediated by single-attack mechanism endo-enzymes. Biotechnol Bioeng 57:387–393. doi:10.1002/(SICI)1097-0290(19980220)57:4<387::AID-BIT2>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  • Srividhya J, Schnell S (2006) Why substrate depletion has apparent first-order kinetics in enzymatic digestion. Comput Biol Chem 30:209–214. doi:10.1016/j.compbiolchem.2006.03.003

    Article  PubMed  CAS  Google Scholar 

  • Stoleriu I, Davidson FA, Liu JL (2004) Quasi-steady state assumptions for non-isolated enzyme-catalysed reactions. J Math Biol 48:82–104. doi:10.1007/s00285-003-0225-7

    Article  PubMed  CAS  Google Scholar 

  • Tzafriri AR, Bercovier M, Parnas H (2002) Reaction diffusion model of the enzymatic erosion of insoluble fibrillar matrices. Biophys J 83:776–793

    Article  PubMed  CAS  Google Scholar 

  • Wheatley MA, Moo-Young M (1977) Degradation of polysaccharides by endo- and exoenzymes: dextran-dextranase model systems. Biotechnol Bioeng 19:219–233. doi:10.1002/bit.260190206

    Article  PubMed  CAS  Google Scholar 

  • Wood PJ, Fulcher RG (1983) Dye interactions. A basis for specific detection and histochemistry of polysaccharides. J Histochem Cytochem 31:823–826

    PubMed  CAS  Google Scholar 

  • Wood PJ, Weisz J, Mahn W (1991) Molecular characterization of cereal β-glucans. II. Size-exclusion chromatography for comparison of molecular weight. Cereal Chem 68:530–536

    CAS  Google Scholar 

  • Woodward JR, Fincher GB (1982) Substrate specificities and kinetic properties of two (1 → 3),(1 → 4)-β-d-glucan endo-hydrolases from germinating barley (Hordeum vulgare). Carbohydr Res 106:111–122. doi:10.1016/S0008-6215(00)80737-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank Prof. Luca Espen for providing access to the microtome, and Renzo Alberici for assistance in the image editing. This work has been supported by the project “Qua.Si.Cer.” of the Italian Ministry of University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gianinetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gianinetti, A. A theoretical framework for β-glucan degradation during barley malting. Theory Biosci. 128, 97–108 (2009). https://doi.org/10.1007/s12064-008-0055-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-008-0055-7

Keywords

Navigation