Skip to main content
Log in

Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Gametophytic apomixis, asexual reproduction involving megagametophytes, occurs in many flowering-plant families and as several variant mechanisms. Developmental destabilization of sexual reproduction as a result of hybridization and/or polyploidy appears to be a general trigger for its evolution, but the evidence is complicated by ploidy-level changes and hybridization occurring with facultative apomixis. The repeated origins of polyploid apomictic complexes in the palaeopolyploid Maloid Rosaceae suggest a new model of evolutionary transitions that may have wider applicability. Two conjectures are fundamental to this model: (1) that as previously suggested by Rutishauser, like many sexual flowering plants the polyploid apomicts require maternal–paternal balance in the second fertilization event that gives rise to the endosperm, and (2) that the observed variation in endosperm ploidy levels relates less to flexibility late in development than to the known variation in developmental origin of the megagametophyte between mechanisms loosely categorized as diplospory and apospory. The model suggests explanations for the relative frequencies of apospory and diplospory, and for the wide but incomplete associations of apospory with a pollination requirement (pseudogamy) and of diplospory with autonomous development of the endosperm. It is suggested that pollination from other taxa may provide some adaptive advantage to pseudogamous apospory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc Lond 82:573–581. doi:10.1111/j.1095-8312.2004.00342.x

    Article  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654. doi:10.1073/pnas.0630618100

    Article  PubMed  CAS  Google Scholar 

  • Archetti M (2004) Recombination and loss of complementation: a more than two-fold cost for parthenogenesis. J Evol Biol 17:1084–1097. doi:10.1111/j.1420-9101.2004.00745.x

    Article  PubMed  CAS  Google Scholar 

  • Arisumi T (1982) Endosperm balance number among New Guinea-Indonesian Impatiens species. J Hered 73:240–242

    Google Scholar 

  • Asker SE, Jerling L (1992) Apomixis in plants. CRC Press, Boca Raton

    Google Scholar 

  • Autran D, Huanca-Mamani W, Vielle-Calzada J-P (2005) Genomic imprinting in plants: the epigenetic version of an Oedipus complex. Curr Opin Plant Biol 8:19–25. doi:10.1016/j.pbi.2004.11.011

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Charlesworth B (1998) Why sex and recombination? Science 281:1986–1990. doi:10.1126/science.281.5385.1986

    Article  PubMed  CAS  Google Scholar 

  • Barton LV, Crocker W (1948) Twenty years of seed research at Boyce Thompson Institute for Plant Research. Faber and Faber, London

    Google Scholar 

  • Bashaw EC, Hanna WH (1990) Apomictic reproduction. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, Cambridge, pp 100–130

    Google Scholar 

  • Battaglia E (1955) The concepts of spore, sporogenesis and apospory. Phytomorphology 5:173–177

    Google Scholar 

  • Bayer RJ (1998) New perspectives into the evolution of polyploid complexes. In: Werker N, van Reenen GBA (eds) Plant evolution in man-made habitats. Universiteit van Amsterdam, The Netherlands, pp 42–43

    Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237. doi:10.1046/j.1365-2540.2000.00663.x

    Article  PubMed  Google Scholar 

  • Bower FO (1887) On apospory and allied phenomena. Transactions of the Linnean Society, Botany, 2nd series 2:301–326 303 plates

    Google Scholar 

  • Bradley JE, Carman JG, Jamison MS, Naumova TN (2007) Heterochronic features of the female germline among several sexual diploid Tripsacum L. (Andropogoneae, Poaceae). Sex Plant Reprod 20:9–17. doi:10.1007/s00497-006-0038-0

    Article  CAS  Google Scholar 

  • Brink RA, Cooper DC (1947a) The endosperm in seed development (part 1). Bot Rev 13:423–477. doi:10.1007/BF02861548

    Article  Google Scholar 

  • Brink RA, Cooper DC (1947b) The endosperm in seed development (concluded). Bot Rev 13:479–541. doi:10.1007/BF02861549

    Article  Google Scholar 

  • Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen A-C, Elven R (2004) Polyploidy in arctic plants. Biol J Linn Soc Lond 82:521–536. doi:10.1111/j.1095-8312.2004.00337.x

    Article  Google Scholar 

  • Brown WV, Emery WHP (1958) Apomixis in the Gramineae: Panicoideae. Am J Bot 45:253–263. doi:10.2307/2439258

    Article  Google Scholar 

  • Bujarska-Borkowska B (2007) Dormancy breaking, germination, and seedling emergence from seeds of Crataegus submollis. Dendrobiology 58:9–15

    Google Scholar 

  • Calderini O, Chang SB, Jong H, Busti A, Paolocci F, Arcioni S, De Vries SC, Abma-Henkens MHC, Lankhorst RMK, Donnison IS, Pupilli F (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191. doi:10.1007/s00122-006-0220-7

    Article  PubMed  CAS  Google Scholar 

  • Camp WH (1942a) The Crataegus problem. Castanea 7:51–55

    Google Scholar 

  • Camp WH (1942b) Ecological problems and species concepts in Crataegus. Ecology 23:368–369. doi:10.2307/1930676

    Article  Google Scholar 

  • Campbell CS, Greene CW, Neubauer BF, Higgins JM (1985) Apomixis in Amelanchier laevis, shadbush (Rosaceae, Maloideae). Am J Bot 72:1397–1403. doi:10.2307/2443512

    Article  Google Scholar 

  • Campbell CS, Evans RC, Morgan DR, Dickinson TA, Arsenault MP (2007) Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Syst Evol 266:119–145. doi:10.1007/s00606-007-0545-y

    Article  CAS  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc Lond 61:51–94. doi:10.1111/j.1095-8312.1997.tb01778.x

    Article  Google Scholar 

  • Carman JG (2001) The gene effect: genome collisions and apomixis. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT Publications, Houston, pp 95–110

    Google Scholar 

  • Carman JG (2007) Do duplicate genes cause apomixis? In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution mechanisms and perspectives. A. R. G. Gantner, Rugell, pp 63–91

    Google Scholar 

  • Carputo D, Monti L, Werner JE, Frusciante L (1999) Uses and usefulness of endosperm balance number. Theor Appl Genet 98:478–484. doi:10.1007/s001220051095

    Article  Google Scholar 

  • Charlesworth B (1980) The cost of sex in relation to mating system. J Theor Biol 84:655–671. doi:10.1016/S0022-5193(80)80026-9

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406. doi:10.1146/annurev.arplant.58.032806.103835

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA Glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42. doi:10.1016/S0092-8674(02)00807-3

    Article  PubMed  CAS  Google Scholar 

  • Christen HR (1950) Untersuchungen über die Embryologie pseudogamer und sexueller Rubusarten. Ber Schweizerischen Bot Ges 60:153–198

    Google Scholar 

  • Clausen J (1961) Introgression facilitated by apomixis in polyploid Poas. Euphytica 10:87–94. doi:10.1007/BF00037208

    Article  Google Scholar 

  • Cooper DC, Brink RA (1949) The endosperm-embryo relationship in an autonomous apomict, Taraxacum officinale. Bot Gaz 111:139–153. doi:10.1086/335582

    Article  Google Scholar 

  • Crane CF (2001) Classification of apomictic mechanisms. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT Publications, Houston, pp 24–43

    Google Scholar 

  • Crane MB, Lewis D (1942) Genetical studies in pears. III. Incompatibility and sterility. J Genet 43:31–43. doi:10.1007/BF02982745

    Article  Google Scholar 

  • Cronn RC, Small RL, Wendel JF (1999) Duplicated genes evolve independently after polyploid formation in cotton. Proc Natl Acad Sci USA 96:14406–14411. doi:10.1073/pnas.96.25.14406

    Article  PubMed  CAS  Google Scholar 

  • Czapik R (1996) Problems of apomictic reproduction in the families Compositae and Rosaceae. Folia Geobot 31:381–387. doi:10.1007/BF02815382

    Article  Google Scholar 

  • Darlington CD (1937) Recent advances in cytology. Churchill, London

    Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Darlington CD (1958) The evolution of genetic systems. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • de Bary A (1878) Über apogame Farne und die Erscheinung der Apogamie im Allgemeinen. Botanische Zeitung 36:449–496

    Google Scholar 

  • de Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants. Springer, Berlin

    Google Scholar 

  • Dickinson TA (1983) Crataegus crus-galli L. sensu lato in Southern Ontario: phenotypic variation and variability in relation to reproductive behavior. PhD thesis, Department of Plant Sciences. University of Western Ontario, London, ON

    Google Scholar 

  • Dickinson TA, Phipps JB (1986) Studies in Crataegus (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus-galli sensu lato in Ontario. Am J Bot 73:116–130. doi:10.2307/2444284

    Article  Google Scholar 

  • Dobeš C, Koch M, Sharbel TF (2006) Embryology, karyology, and modes of reproduction in the North American genus Boechera (Brassicaceae): a compilation of seven decades of research. Ann Mo Bot Gard 93:517–534. doi:10.3417/0026-6493(2007)93[517:EKAMOR]2.0.CO;2

    Article  Google Scholar 

  • Edman G (1931) Apomeiosis und Apomixis bei Atraphaxis frutescens C. Koch. Acta Horti Bergiani 11:13–66

    Google Scholar 

  • Eggleston WW (1910) Sketches of the Crataegus problem, with special reference to work in the South. J N Y Bot Gard 11:78–83

    Google Scholar 

  • Ehlenfeldt MK, Ortiz R (1995) Evidence on the nature and origins of endosperm dosage requirements in Solanum and other angiosperm genera. Sex Plant Reprod 8:189–196. doi:10.1007/BF00228936

    Article  Google Scholar 

  • Entani T, Takayama S, Iwano M, Shiba M, Che F-S, Isogai A (1999) Relationship between polyploidy and pollen self incompatibility phenotype in Petunia hybrida Vilm. Biosci Biotechnol Biochem 63:1882–1888. doi:10.1271/bbb.63.1882

    Article  PubMed  CAS  Google Scholar 

  • Eriksen B, Fredrikson M (2000) Megagametophyte development in Potentilla nivea (Rosaceae) from Northern Swedish Lapland. Am J Bot 87:642–651. doi:10.2307/2656850

    Article  PubMed  Google Scholar 

  • Ernst A (1917) Über den Ursprung der apogamen Angiospermen. Vierteljahrsschrift Naturforschenden Ges Zurich 62:336–348

    Google Scholar 

  • Ernst A (1918) Bastardierung als Ursache der Apogamie im Pflanzenreich: Ein Hypothese zu experimentellen Vererbungs- und Abstammungslehre. Fischer, Jena

    Google Scholar 

  • Ernst A (1921) Apogamie oder dauernde Parthenogenesis? Z Indukt Abstamm Vererbungsl 26:144–160. doi:10.1007/BF01715470

    Article  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Rosaceae: Maloideae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484. doi:10.3732/ajb.89.9.1478

    Article  CAS  Google Scholar 

  • Fagerlind F (1937) Embryologische zytologische und bestäubungsexperimentelle Studien in der Familie Rubiaceae nebst Bemerkungen über einige Polyploiditätsprobleme. Acta Horti Bergiani 11:195–470

    Google Scholar 

  • Fagerlind F (1940) Die Terminologie der Apomixis-Prozesse. Hereditas 26:1–22

    Google Scholar 

  • Fagerlind F (1944) Der Zusammenhang zwischen Perennität, Apomixis und Polyploidie. Hereditas 30:179–200

    Google Scholar 

  • Fehrer J, Gemeinholzer B, Chrtek J, Bräutigam S (2007a) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylogenet Evol 42:347–361. doi:10.1016/j.ympev.2006.07.004

    Article  PubMed  CAS  Google Scholar 

  • Fehrer J, Krahulcová A, Krahulec Fe, Chrtek J Jr, Rosenbaumová R, Bräutigam S (2007b) Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution. Mechanisms and perspectives. Gantner, Rugell, pp 359–390

    Google Scholar 

  • Finkelstein R, Reeves W, Ariizumi T, Steber C (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59:387–415. doi:10.1146/annurev.arplant.59.032607.092740

    Article  PubMed  CAS  Google Scholar 

  • Focke WO (1881) Die Pflanzen-mischlinge, ein Beitrag zur Biologie der Gewächse. Borntraeger, Berlin

    Google Scholar 

  • Friedman WE, Williams JH (2004) Developmental evolution of the sexual process in ancient flowering plant lineages. Plant Cell 16:S119–S132. doi:10.1105/tpc.017277

    Article  PubMed  CAS  Google Scholar 

  • Friedman WE, Madrid EN, Williams JH (2008) Origin of the fittest and survival of the fittest: relating female gametophyte development to endosperm genetics. Int J Plant Sci 169:79–92. doi:10.1086/523354

    Article  Google Scholar 

  • Goldblatt P (1976) Cytotaxonomic studies in the tribe Quillajeae (Rosaceae). Ann Mo Bot Gard 63:200–206. doi:10.2307/2395226

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grimanelli D, Hernández M, Perotti E, Savidan Y (1997) Dosage effects in the endosperm of diplosporous apomictic Tripsacum (Poaceae). Sex Plant Reprod 10:279–282. doi:10.1007/s004970050098

    Article  Google Scholar 

  • Grimanelli D, LeBlanc O, Espinosa E, Perotti E, González de León D, Savidan Y (1998) Non-Mendelian transmission of apomixis in maize Tripsacum hybrids caused by a transmission ratio distortion. Heredity 80:40–47. doi:10.1046/j.1365-2540.1998.00264.x

    Article  PubMed  Google Scholar 

  • Gustafsson Å (1939) The interrelation of meiosis and mitosis I. The mechanism of agamospermy. Hereditas 25:289–322

    Google Scholar 

  • Gustafsson Å (1946) Apomixis in higher plants, Part I: the mechanism of apomixis. Lunds Universitets Årsskrift. N. F. 42:1–68

    Google Scholar 

  • Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG (2003) Imprinting in the endosperm; a possible role in preventing wide hybridisation. Philos Trans R Soc Lond B Biol Sci 358:1105–1111. doi:10.1098/rstb.2003.1292

    Article  PubMed  CAS  Google Scholar 

  • Haig D, Westoby M (1989) Parent-specific gene expression and the triploid endosperm. Am Nat 134:147–155. doi:10.1086/284971

    Article  Google Scholar 

  • Haig D, Westoby M (1991) Genomic imprinting in endosperm: its effect on seed development in crosses between species, and between different ploidies of the same species, and its implications for the evolution of apomixis. Philos Trans R Soc Lond Ser B 333:1–13. doi:10.1098/rstb.1991.0057

    Article  Google Scholar 

  • Håkansson A (1952) Seed development after 2x, 4x crosses in Galeopsis pubescens. Hereditas 38:425–448

    Google Scholar 

  • Håkansson A (1953) Endosperm formation after 2x, 4x crosses in certain cereals, especially Hordeum vulgare. Hereditas 39:57–64

    Google Scholar 

  • Håkansson A (1956) Seed development of Brassica oleracea and B. rapa after certain reciprocal pollinations. Hereditas 42:373–396

    Google Scholar 

  • Håkansson A, Ellerström S (1950) Seed development after reciprocal crosses between diploid and tetraploid rye. Hereditas 36:256–296

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1975) On Ö Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390. doi:10.1007/BF02860830

    Article  Google Scholar 

  • Haskell G (1960) Role of the male parent in crosses involving apomictic Rubus species. Heredity 14:101–113. doi:10.1038/hdy.1960.8

    Article  Google Scholar 

  • Hawkes JG, Jackson MT (1992) Taxonomic and evolutionary implications of the endosperm balance number hypothesis in potatoes. Theor Appl Genet 84:180–185. doi:10.1007/BF00223998

    Article  Google Scholar 

  • Hilu KW (2004) Phylogenetics and chromosomal evolution in the Poaceae (grasses). Aust J Bot 52:13–22. doi:10.1071/BT03103

    Article  CAS  Google Scholar 

  • Hjelmqvist H (1957) The apomictic development of Malus sieboldii. Bot Not 110:455–467

    Google Scholar 

  • Hjelmqvist H (1962) The embryo sac development in some Cotoneaster species. Bot Not 115:208–236

    Google Scholar 

  • Hörandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hörandl E, Grossniklaus U, van Dijk PJ Sharbel TF eds) (2007) Apomixis: evolution, mechanisms and perspectives. Gantner, Rugell

  • Huang B-Q, Russell SD (1992) Female germ unit: organization, isolation, and function. Int Rev Cytol 140:233–293. doi:10.1016/S0074-7696(08)61099-2

    Article  Google Scholar 

  • Jankun A, Kovanda M (1988) Apomixis at the diploid level in Sorbus eximia (Embryological studies in Sorbus 3). Preslia 60:193–213

    Google Scholar 

  • Jennings DL, Craig DL, Topham PB (1967) The role of the male parent in the reproduction of Rubus. Heredity 22:43–55. doi:10.1038/hdy.1967.4

    Article  Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    Google Scholar 

  • Karpechenko GD (1928) Polyploid hybrids of Raphanus sativus L. X Brassica oleracea L. Z Indukt Abstamm Vererbungsl 48:1–85. doi:10.1007/BF01740955

    Article  Google Scholar 

  • Katsiosis A, Hanneman RE, Forsberg RA (1995) Endosperm balance number and the polar-nuclei activation hypotheses for endosperm development in interspecific crosses of the Solanaceae and Gramineae, respectively. Theor Appl Genet 91:848–855

    Google Scholar 

  • Kermicle JL, Alleman M (1990) Gametic imprinting in maize in relation to the angiosperm life cycle. Development 108 Suppl:9–14

    Google Scholar 

  • Kihara H (1951) Triploid watermelons. Proc Am Soc Hortic Sci 58:217–230

    Google Scholar 

  • Kihara H, Nishiyama I (1932) The genetics and cytology of certain cereals. III. Different compatibility in reciprocal crosses of Avena with special reference to tetraploid hybrids between hexaploid and diploid species. Jpn J Bot 6:245–305

    Google Scholar 

  • Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ (1999) Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proc Natl Acad Sci USA 96:4186–4191. doi:10.1073/pnas.96.7.4186

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574. doi:10.1146/annurev.arplant.54.110901.160842

    Article  PubMed  CAS  Google Scholar 

  • Koltunow AM, Johnson SD, Bicknell RA (2000) Apomixis is not developmentally conserved in related, genetically characterized Hieracium plants of varying ploidy. Sex Plant Reprod 12:253–266. doi:10.1007/s004970050193

    Article  Google Scholar 

  • Krylova VV (1976) Apospory and polyembryony in apple. In: Khokhlov SS (ed) Apomixis and breeding (translation of Apomiksis i Selektsiya, Nauka Publishers, Moscow, 1970). Amerind Publishing, New Delhi, pp 124–129

    Google Scholar 

  • Levin DA (1975) Minority cytotype exclusion in local plant populations. Taxon 24:35–43. doi:10.2307/1218997

    Article  Google Scholar 

  • Lewis D (1949) Incompatibility in flowering plants. Biol Rev Camb Philos Soc 24:472–496. doi:10.1111/j.1469-185X.1949.tb00584.x

    Article  Google Scholar 

  • Liljefors A (1953) Studies on propagation, embryology, and pollination in Sorbus. Acta Horti Bergiani 16:277–329

    Google Scholar 

  • Lin B-Y (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115

    PubMed  CAS  Google Scholar 

  • Lo E (2008) Global and fine scale molecular studies of polyploid evolution in Crataegus L. (Rosaceae). PhD thesis, Department of Ecology and Evolutionary Biology, University of Toronto, Toronto

  • Longley AE (1924) Cytological studies in the genus Crataegus. Am J Bot 11:295–317. doi:10.2307/2435389

    Article  Google Scholar 

  • Macklin JA 2001. Systematics of Crataegus series Coccineae (Rosaceae). PhD thesis, Department of Plant Sciences, University of Western Ontario, London, ON

  • Maheshwari P (1950) An introduction to the embryology of the angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Marshall DR, Brown AHD (1981) The evolution of apomixis. Heredity 47:1–15. doi:10.1038/hdy.1981.54

    Article  Google Scholar 

  • Martelotto LG, Ortiz JPA, Stein J, Espinoza F, Quarin CL, Pessino SC (2005) A comprehensive analysis of gene expression alterations in a newly synthesized Paspalum notatum autotetraploid. Plant Sci 169:211–220. doi:10.1016/j.plantsci.2005.03.015

    Article  CAS  Google Scholar 

  • Mazzucato A (1996) Which gene(s) are we looking for? Apomixis Newsletter 9

  • McAllister HA, Gillham CM (1980) Tab. 792 Sorbus forrestii. Rosaceae. Curtis’s Bot Mag 183:1–4

    Google Scholar 

  • Mogie M (1992) The evolution of asexual reproduction in plants. Chapman & Hall, London

    Google Scholar 

  • Muniyamma M, Phipps JB (1979a) Meiosis and polyploidy in Ontario species of Crataegus in relation to their systematics. Can J Genet Cytol 21:231–241

    Google Scholar 

  • Muniyamma M, Phipps JB (1979b) Cytological proof of apomixis in Crataegus (Rosaceae). Am J Bot 66:149–155. doi:10.2307/2442517

    Article  Google Scholar 

  • Muniyamma M, Phipps JB (1984a) Studies in Crataegus. X. A note on the occurrence of diplospory in Crataegus dissona Sarg. (Maloideae, Rosaceae). Can J Genet Cytol 26:249–252

    Google Scholar 

  • Muniyamma M, Phipps JB (1984b) Studies in Crataegus. XI. Further cytological evidence for the occurrence of apomixis in North American hawthorns. Can J Bot 62:2316–2324. doi:10.1139/b84-315

    Article  Google Scholar 

  • Müntzing A (1933) Hybrid incompatibility and the origin of polyploidy. Hereditas 18:33–55

    Article  Google Scholar 

  • Nassar NMA (2006) Chromosome doubling induces apomixis in a cassava X Manihot anomala hybrid. Hereditas 143:246–248. doi:10.1111/j.2006.0018-0661.01957.x

    Article  PubMed  Google Scholar 

  • Naumova TN (1993) Apomixis in angiosperms: nucellar and integumentary embryony. CRC Press, Boca Raton

    Google Scholar 

  • Naumova TN, Hayward MD, Wagenvoort M (1999) Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sex Plant Reprod 12:43–52. doi:10.1007/s004970050170

    Article  Google Scholar 

  • Nogler GA (1982) How to obtain diploid apomictic Ranunculus auricomus plants not found in the wild state. Bot Helv 92:13–22

    Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angiosperms. Springer, Berlin, pp 475–518

    Google Scholar 

  • Noirot M (1993) Allelic ratios and sterility in the agamic complex of the Maximae (Panicoideae): evolutionary role of the residual sexuality. J Evol Biol 6:95–101. doi:10.1046/j.1420-9101.1993.6010095.x

    Article  Google Scholar 

  • Noirot M, Couvet D, Hamon S (1997) Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts. Theor Appl Genet 95:479–483. doi:10.1007/s001220050586

    Article  Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98. doi:10.1038/sj.hdy.6800907

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (1988) Apomixis versus sexuality in blackberries (Rubus subgen Rubus, Rosaceae). Plant Syst Evol 160:207–218. doi:10.1007/BF00936048

    Article  Google Scholar 

  • Nygren A (1967) Apomixis in the angiosperms. Handbuch Pflanzenphysiologie 18:551–596

    Google Scholar 

  • Ortiz R, Ehlenfeldt MK (1992) The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60:105–113

    Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy: incidence and evolution. Annu Rev Genet 34:401–437. doi:10.1146/annurev.genet.34.1.401

    Article  PubMed  CAS  Google Scholar 

  • Palmer EJ (1932) The Crataegus problem. J Arnold Arbor 13:342–362

    Google Scholar 

  • Palmer EJ (1943) The species problem in Crataegus. Chron Bot 7:373–375

    Google Scholar 

  • Paun O, Stuessy TF, Hörandl E (2006) The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol 171:223–236. doi:10.1111/j.1469-8137.2006.01738.x

    Article  PubMed  CAS  Google Scholar 

  • Phipps JB (2005) A review of hybridization in North American hawthorns —another look at “The Crataegus problem”. Ann Mo Bot Gard 92:113–126

    Google Scholar 

  • Potter D, Eriksson T, Evans RC, Oh SH, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault MP, Dickinson TA, Campbell CS (2007) Phylogeny and classification of Rosaceae. Plant Syst Evol 266:5–43. doi:10.1007/s00606-007-0539-9

    Article  Google Scholar 

  • Quarin CL (1999) Effect of pollen source and pollen ploidy on endosperm formation and seed set in pseudogamous apomictic Paspalum notatum. Sex Plant Reprod 11:331–335. doi:10.1007/s004970050160

    Article  Google Scholar 

  • Quarin CL, Hanna WW (1980) Effect of three ploidy levels on meiosis and mode of reproduction in Paspalum hexastachyum. Crop Sci 20:69–75

    Google Scholar 

  • Quarin CL, Espinoza F, Martinez EJ, Pessino SC, Bovo OA (2001) A rise of ploidy level induces the expression of apomixis in Paspalum notatum. Sex Plant Reprod 13:243–249. doi:10.1007/s004970100070

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501. doi:10.1146/annurev.ecolsys.29.1.467

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639. doi:10.1146/annurev.ecolsys.33.010802.150437

    Article  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91. doi:10.1111/j.1469-8137.2005.01491.x

    Article  PubMed  CAS  Google Scholar 

  • Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124. doi:10.1038/nature06557

    Article  PubMed  CAS  Google Scholar 

  • Renner O (1916) Zur Terminologie des pflanzlichen Generationswechsels. Biologisches Centralblatt 36:337–374

    Google Scholar 

  • Richards AJ (1986) Plant Breeding Systems. Chapman & Hall, London

    Google Scholar 

  • Richards AJ (1996) Why is gametophytic apomixis almost restricted to polyploids? The gametophyte-expressed lethal model. Apomixis Newsletter 9

  • Ridout MS, Xu X-M, Tobutt KR (2005) Single-locus gametophytic incompatibility in autotetraploids. J Hered 96:430–433. doi:10.1093/jhered/esi063

    Article  PubMed  CAS  Google Scholar 

  • Roche D, Hanna WW, Ozias-Akins P (2001) Is supernumerary chromatin involved in gametophytic apomixis of polyploid plants? Sex Plant Reprod 13:343–349. doi:10.1007/s004970100094

    Article  Google Scholar 

  • Rodrigues JCM, Koltunow AMG (2005) Epigenetic aspects of sexual and asexual seed development. Acta Biol Cracov Ser Bot 47:37–49

    Google Scholar 

  • Rutishauser A (1954) Die Entwicklungserregung des Endosperms bei pseudogamen Ranunculusarten. Mitt Naturforschenden Ges Schaffhausen 25:1–45

    Google Scholar 

  • Rutishauser A (1961) Pseudogamous reproduction and evolution. In: Recent advances in botany: from lectures and symposia presented to the IX International Botanical Congress Montreal 1959. Toronto University Press, Toronto, pp 699–702

  • Rutishauser A (1967) Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. Protoplasmatologia. Handbuch Protoplasmaforschung 6:1–245

    Google Scholar 

  • Rutishauser A (1969) Embryologie und Fortpflanzungsbiologie der Angiospermen: eine Einführung. Springer, Wien

    Google Scholar 

  • Savidan YH (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Scott RJ, Spielman M (2004) Epigenetics: imprinting in plants and mammals—the same but different? Curr Biol 14:R201–R203. doi:10.1016/j.cub.2004.02.022

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    PubMed  CAS  Google Scholar 

  • Siena LA, Sartor ME, Espinoza F, Quarin CL, Ortiz JPA (2008) Genetic and embryological evidences of apomixis at the diploid level in Paspalum rufum support recurrent auto-polyploidization in the species. Sex Plant Reprod 21:205–215. doi:10.1007/s00497-008-0080-1

    Article  CAS  Google Scholar 

  • Smith PG, Phipps JB (1988) Studies in Crataegus (Rosaceae, Maloideae), XIX. Breeding behaviour in Ontario Crataegus series Rotundifoliae. Can J Bot 66:1914–1923

    Google Scholar 

  • Solntzeva MP (1978) Apomixis and hemigamy as one of its forms. Proc Indian Natl Sci Acad B 44:78–90

    Google Scholar 

  • Solntzeva MP (2003) About some terms of apomixis: pseudogamy and androgenesis. Biologia 58:1–7

    Google Scholar 

  • Spielman M, Vinkenoog R, Scott RJ (2003) Genetic mechanisms of apomixis. Philos Trans R Soc Biol Sci 358:1095–1103. doi:10.1098/rstb.2003.1298

    Article  CAS  Google Scholar 

  • Spillane C, Steimer A, Grossniklaus U (2001) Apomixis in agriculture: the quest for clonal seeds. Sex Plant Reprod 14:179–187. doi:10.1007/s00497-001-0117-1

    Article  Google Scholar 

  • Stebbins GL (1941) Apomixis in the angiosperms. Bot Rev 7:507–542. doi:10.1007/BF02872410

    Article  Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1980) Polyploidy in plants: unsolved problems and prospects. In: Lewis WH (ed) Polyploidy: biological relevance. Plenum Press, New York, pp 495–520

    Google Scholar 

  • Stebbins GLJ, Babcock EB (1939) The effect of polyploidy and apomixis on the evolution of species in Crepis. J Hered 30:519–530

    Google Scholar 

  • Strasburger E (1904) Die Apogamie der Eualchemillen und allgemeine Gesichtspunkte, die sich aus ihr ergeben. Jahrbücher für wissenschaftliche Botanik 41:88–164 pl. 161–164

    Google Scholar 

  • Täckholm G (1922) Zytologische Studien über die Gattung Rosa. Acta Horti Bergiani 7:97–381

    Google Scholar 

  • Takayama S, Isogai A (2005) Self incompatibility in plants. Annu Rev Plant Biol 56:467–489. doi:10.1146/annurev.arplant.56.032604.144249

    Article  PubMed  CAS  Google Scholar 

  • Talent N, Dickinson TA (2005) Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Can J Bot 83:1268–1304. doi:10.1139/b05-088

    Article  CAS  Google Scholar 

  • Talent N, Dickinson TA (2007a) The potential for ploidy level increases and decreases in Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae). Can J Bot 85:570–584. doi:10.1139/B07-028

    Article  Google Scholar 

  • Talent N, Dickinson TA (2007b) Endosperm formation in aposporous Crataegus (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytol 173:231–249. doi:10.1111/j.1469-8137.2006.01918.x

    Article  PubMed  Google Scholar 

  • Talent N, Dickinson TA (2007c) Apomixis and hybridization in Rosaceae subtribe Pyrineae Dumort.: a new tool promises new insights. In: Hörandl E, Grossniklaus U, van Dijk PJ, Sharbel TF (eds) Apomixis: evolution, mechanisms and perspectives. Gantner Verlag, Rugell, pp 301–316

    Google Scholar 

  • Tas ICQ, van Dijk PJ (1999) Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity 83:707–714. doi:10.1038/sj.hdy.6886190

    Article  PubMed  Google Scholar 

  • Thompson JD, Lumaret R (1992) The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol 7:302–306. doi:10.1016/0169-5347(92)90228-4

    Article  Google Scholar 

  • Topham PB (1970) The histology of seed development following crosses between diploid and autotetraploid raspberries (Rubus idaeus L.). Ann Bot (Lond) 34:137–145

    Google Scholar 

  • van Dijk P (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc Lond B Biol Sci 358:1113–1121. doi:10.1098/rstb.2003.1302

    Article  PubMed  CAS  Google Scholar 

  • van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of angiosperms: a reappraisal. In: Bakker FT, Chatrou LW, Gravendeel B, Pelsner PB (eds) Plant species-level systematics: new perspectives on pattern and process, pp. 101–116

  • van Dijk PJ, Tas ICQ, Falque M, Bakx-Schotman T (1999) Crosses between sexual and apomictic dandelions (Taraxacum). II. The breakdown of apomixis. Heredity 83:715–721. doi:10.1038/sj.hdy.6886200

    Article  PubMed  Google Scholar 

  • Varmuza S (1993) Gametic imprinting as a speciation mechanism in mammals. J Theor Biol 164:1–13. doi:10.1006/jtbi.1993.1137

    Article  PubMed  CAS  Google Scholar 

  • Vielle Calzada J-P, Crane CF, Stelly DM (1996) Apomixis: the asexual revolution. Science 274:1322–1323. doi:10.1126/science.274.5291.1322

    Article  Google Scholar 

  • Vines SH (1878) The “proembryo” of Chara: an essay in morphology. J Bot Br Foreign 16:355–363

    Google Scholar 

  • Vinkenoog R, Scott RJ (2001) Autonomous endosperm development in flowering plants: how to overcome the imprinting problem? Sex Plant Reprod 14:189–194. doi:10.1007/s00497-001-0106-4

    Article  Google Scholar 

  • Vinkenoog R, Bushell C, Spielman M, Adams S, Dickinson HG, Scott RJ (2003) Genomic imprinting and endosperm development in flowering plants. Mol Biotechnol 25:149–184. doi:10.1385/MB:25:2:149

    Article  PubMed  CAS  Google Scholar 

  • von Wangenheim K-H (1961) Zur Ursache der Abortion von Samenanlagen in Diploid-Polyploid-Kreuzungen. I. Die Chromosomenzahlen von mutterlichem Gewebe, Endosperm und Embryo. Z Pflanzenzuchtung 46:13–19

    Google Scholar 

  • von Wangenheim K-H (1962) Zur Ursache der Abortion von Samenanlagen in Diploid-Polyploid-Kreuzungen. II. Unterschiedliche Differenzierung von Endospermen mit gleichem Genom. Z Vererbungsl 93:319–334. doi:10.1007/BF00888790

    Article  Google Scholar 

  • Warmke HE (1954) Apomixis in Panicum maximum. Am J Bot 41:5–11. doi:10.2307/2438575

    Article  Google Scholar 

  • Whitton J, Sears CJ, Baack EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182. doi:10.1086/523369

    Article  Google Scholar 

  • Winge Ö (1917) The chromosomes: their numbers and general importance. C R Trav Lab Carlsberg 13:131–275

    Google Scholar 

  • Winkler H (1908) Über Parthenogenesis und Apogamie im Pflanzenreich. Progressus Rei Botanicae 2:293–454

    Google Scholar 

  • Winkler H (1920) Verbreitung und Ursache der Parthenogenesis im Pflanzen- und Tierreiche. Gustav Fischer, Jena

    Google Scholar 

  • Yamane H, Ikeda K, Ushijima K, Sassa H, Tao R (2003) A pollen-expressed gene for a novel protein with an F-box motif that is very tightly linked to a gene for S-RNase in two species of cherry, Prunus cerasus and P. avium. Plant Cell Physiol 44:764–769. doi:10.1093/pcp/pcg088

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank two anonymous reviewers for insightful suggestions; Knud Ib Christensen and Eugenia Y. Y. Lo for permission to cite unpublished results from collaborative work; Timothy A. Dickinson, Graeme Hirst, and Sara Scharf for comments on earlier versions of the manuscript; the Carlsberg Foundation for funding some cited ongoing research; and the Canadian Newt and Eft Foundation for funding the writing of this paper. Ross Bicknell, Timothy A. Dickinson, and Anna Koltunow provided encouragement to complete the writing, which I gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Talent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 62.2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talent, N. Evolution of gametophytic apomixis in flowering plants: an alternative model from Maloid Rosaceae. Theory Biosci. 128, 121–138 (2009). https://doi.org/10.1007/s12064-009-0061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-009-0061-4

Keywords

Navigation