Skip to main content
Log in

Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

A central reason that undergirds the significance of evo-devo is the claim that development was left out of the Modern synthesis. This claim turns out to be quite complicated, both in terms of whether development was genuinely excluded and how to understand the different kinds of embryological research that might have contributed. The present paper reevaluates this central claim by focusing on the practice of model organism choice. Through a survey of examples utilized in the literature of the Modern synthesis, I identify a previously overlooked feature: exclusion of research on marine invertebrates. Understanding the import of this pattern requires interpreting it in terms of two epistemic values operating in biological research: theoretical generality and explanatory completeness. In tandem, these values clarify and enhance the significance of this exclusion. The absence of marine invertebrates implied both a lack of generality in the resulting theory and a lack of completeness with respect to particular evolutionary problems, such as evolvability and the origin of novelty. These problems were salient to embryological researchers aware of the variation and diversity of larval forms in marine invertebrates. In closing, I apply this analysis to model organism choice in evo-devo and discuss its relevance for an extended evolutionary synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. This worry can be extended to various claims made about participation in the Modern synthesis that are not necessarily related to embryology (cf. Borrello 2009).

  2. There is no pretense that this survey of monographs is exhaustive. The rationale for including these authors is treated below in “Discussion”.

  3. This particular example is discussed extensively and is drawn from Walter Garstang’s hypothesis about the origin of chordates via paedomorphosis (e.g., Garstang 1928; cf. Horder 2006).

  4. Letter from Mayr to Newell (10 January 1947), quoted in Cain (2000), p. 238.

  5. In an intriguing transnational parallel, Simpson often cites the work of Schindewolf on marine invertebrates, although their interaction is largely antagonistic (cf. Simpson 1949).

  6. These patterns also reinforce the need to distinguish between comparative and experimental embryology when evaluating exclusions from the Modern Synthesis (Love and Raff 2003) because de Beer and Waddington exhibit such dramatically different styles in their use of model organisms.

  7. Non-epistemic values, such as the likelihood of securing funding, are also important but ignored here. The complex relationship between the multitude of epistemic and non-epistemic values operating in science is discussed extensively elsewhere (e.g., Kincaid et al. 2007).

References

  • Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon Press, Oxford

    Google Scholar 

  • Battaglia B (1958) Balanced polymorphism in Tisbe reticulata, a marine copepod. Evol Int J Org Evol 12:358–364. doi:10.2307/2405857

    Google Scholar 

  • Berrill NJ (1931) Studies in tunicate development. Part II. Abbreviation of development in the Molgulidae. Philos Trans R Soc Lond B Biol Sci 219:281–346. doi:10.1098/rstb.1931.0006

    Article  Google Scholar 

  • Berrill NJ (1935) Studies in tunicate development. Part III. Differential retardation and acceleration. Philos Trans R Soc Lond B Biol Sci 225:255–326. doi:10.1098/rstb.1935.0013

    Article  Google Scholar 

  • Berrill NJ (1936) Studies in tunicate development. Part V. The evolution and classification of ascidians. Philos Trans R Soc Lond B Biol Sci 226:43–70. doi:10.1098/rstb.1936.0002

    Article  Google Scholar 

  • Berrill NJ (1955) The origin of vertebrates. Clarendon Press, Oxford

    Google Scholar 

  • Bier E, McGinnis W (2003) Model organisms in the study of development and disease. In: Epstein CJ, Erickson RP, Wynshaw-Boris A (eds) Molecular basis of inborn errors of development. Oxford University Press, New York, pp 25–45

    Google Scholar 

  • Boell LA, Bucher G (2008) Whole-mount in situ hybridization in the rotifer Brachionus plicatilis representing a basal branch of lophotrochozoans. Dev Genes Evol 218:445–451. doi:10.1007/s00427-008-0234-z

    Article  PubMed  CAS  Google Scholar 

  • Bolker JA (1995) Model systems in developmental biology. Bioessays 17:451–455. doi:10.1002/bies.950170513

    Article  PubMed  CAS  Google Scholar 

  • Borrello ME (2009) Shifting balance and balancing selection: a group selectionist’s interpretation of wright and Dobzhansky. In: Cain J, Ruse M (eds) Descended from Darwin: insights into American evolutionary studies, 1925–1950. American Philosophical Society, Philadelphia, pp 323–346

  • Bowler PJ (1996) Life’s splendid drama: evolutionary biology and the reconstruction of life’s ancestry, 1860–1940. University of Chicago Press, Chicago

    Google Scholar 

  • Brigandt I (2006) Homology and heterochrony: the evolutionary embryologist Gavin Rylands De Beer (1899–1972). J Exp Zool 306B:317–328. Mol Dev Evol. doi:10.1002/jez.b.21100

    Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates. Sinauer Associates, Sunderland

    Google Scholar 

  • Burian RM (2005 [1993]) How the choice of experimental organism matters: epistemological reflections on an aspect of biological practice. In: The epistemology of development, evolution, and genetics: selected essays. Cambridge University Press, New York, pp 11–28

  • Buss LW (1987) The evolution of individuality. Princeton University Press, Princeton

    Google Scholar 

  • Cain JA (1993) Common problems and cooperative solutions: organizational activity in evolutionary studies, 1936–1947. Isis 84:1–25. doi:10.1086/356371

    Article  PubMed  CAS  Google Scholar 

  • Cain JA (1994) Ernst Mayr as community architect: launching the society for the study of evolution and the journal evolution. Biol Philos 9:387–427. doi:10.1007/BF00857945

    Article  Google Scholar 

  • Cain JA (2000) For the ‘promotion’ and ‘integration’ of various fields: first years of evolution, 1947–1949. Arch Nat Hist 27:231–259

    PubMed  CAS  Google Scholar 

  • Cain JA (2002) Epistemic and community transition in american evolutionary studies: the ‘committee on common problems of genetics, paleontology, and systematics’ (1942–1949). Stud Hist Philos Biol Biomed Sci 33:283–313. doi:10.1016/S0039-3681(02)00019-5

    Article  Google Scholar 

  • Churchill FB (1980) The modern evolutionary synthesis and the biogenetic law. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 112–122

    Google Scholar 

  • Cloud PE Jr (1948) Some problems and patterns of evolution exemplified by fossil invertebrates. Evol Int J Org Evol 2:322–350. doi:10.2307/2405523

    Google Scholar 

  • Collins JP, Gilbert SF, Laubichler MD, Müller GB (2007) Modeling in evodevo: how to integrate development, evolution, and ecology. In: Laubichler MD, Müller GB (eds) Modeling biology. MIT Press, Cambridge, pp 355–378

    Google Scholar 

  • Davis GK, Dietrich MR, Jacobs DK (2009) Homeotic mutants and the assimilation of developmental genetics into the evolutionary synthesis, 1915–1952. In: Cain J, Ruse M (eds) Descended from Darwin: insights into American evolutionary studies, 1925–1950. American Philosophical Society, Philadelphia, pp 133–154

  • de Beer GR (1930) Embryology and evolution. Clarendon Press, Oxford

  • de Beer GR (1941) Embryos and ancestors. Oxford University Press, Oxford

    Google Scholar 

  • de Beer GR (1951) Embryos and ancestors, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • de Beer GR (1958) Embryos and ancestors, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • de Beer GR (1967 [1951]) Vertebrate zoology: an introduction to the comparative anatomy, embryology and evolution of chordate animals. Sidgwick and Jackson, London

  • de Beer GR (1971) Homology, an unsolved problem. Oxford University Press, London

    Google Scholar 

  • Dietrich MR (2000) From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution, and genetics. Am Zool 40:28–37. doi:10.1668/0003-1569(2000)040[0738:FHMTHE]2.0.CO;2

    Article  Google Scholar 

  • Dobzhansky T (1933) Geographical variation in lady-beetles. Am Nat 67:97–126. doi:10.1086/280472

    Article  Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky T (1941) Genetics and the origin of species, 2nd edn. Columbia University Press, New York

    Google Scholar 

  • Dobzhansky T (1951) Genetics and the origins of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Dunn C, Hejnol A, Matus D, Pang K, Browne W, Smith S, Seaver E, Rouse G, Obst M, Edgecombe G, Sørensen M, Haddock SH, Schmidt-Rhaesa A, Okusu A, Kristensen R, Wheeler W, Martindale M, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452:745–749. doi:10.1038/nature06614

    Article  PubMed  CAS  Google Scholar 

  • Evans HE (1959) Some comments on the evolution of the Arthropoda. Evol Int J Org Evol 13:147–149. doi:10.2307/2405951

    Google Scholar 

  • Finnerty JR, Pang K, Burton P, Paulson D, Martindale MQ (2004) Origins of bilateral symmetry: Hox and Dpp expression in a sea anemone. Science 304:1335–1337. doi:10.1126/science.1091946

    Article  PubMed  CAS  Google Scholar 

  • Flower RH (1955) Saltations in nautiloid coiling. Evol Int J Org Evol 9:244–260. doi:10.2307/2405647

    Google Scholar 

  • Fraser SE, Harland RM (2000) The molecular metamorphosis of experimental embryology. Cell 100:41–55. doi:10.1016/S0092-8674(00)81682-7

    Article  PubMed  CAS  Google Scholar 

  • Garstang W (1928) The morphology of the tunicata, and its bearings on the phylogeny of the Chordata. Q J Microsc Sci 72:51–187

    Google Scholar 

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372. doi:10.1006/dbio.1996.0032

    Article  PubMed  CAS  Google Scholar 

  • Glaessner MF (1957) Evolutionary trends in Crustacea (Malacostraca). Evol Int J Org Evol 11:178–184. doi:10.2307/2406049

    Google Scholar 

  • Hall BK (1998) Germ layers and the germ-layer theory revisited: primary and secondary germ layers, neural crest as a fourth germ layer, homology, and demise of the germ-layer theory. In: Hecht MK, Macintyre RJ, Clegg MT (eds) Evolutionary biology, vol 30. Plenum Press, New York, pp 121–186

    Google Scholar 

  • Hamburger V (1980) Embryology and the modern synthesis in evolutionary theory. In: Mayr E, Provine WB (eds) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, pp 97–112

    Google Scholar 

  • Hanken J (1993) Model systems versus outgroups: alternative approaches to the study of head development and evolution. Am Zool 33:448–456

    Google Scholar 

  • Hartman WD (1957) Ecological niche differentiation in the boring sponges (Clionidae). Evol Int J Org Evol 11:294–297. doi:10.2307/2405792

    Google Scholar 

  • Hempel CG (1966) Philosophy of natural science. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Holland LZ (2002) Heads or Tails? Amphioxus and the evolution of anterior–posterior patterning in deuterostomes. Dev Biol 241:209–228. doi:10.1006/dbio.2001.0503

    Article  PubMed  CAS  Google Scholar 

  • Horder TJ (2006) Gavin Rylands De Beer: how embryology foreshadowed the dilemmas of the genome. Nat Rev Genet 7:892–898. doi:10.1038/nrg1918

    Article  PubMed  CAS  Google Scholar 

  • Huxley JS (1942) Evolution: the modern synthesis. Harper & Brothers Publishers, New York

    Google Scholar 

  • Jenner RA (2006) Unburdening evo-devo: ancestral attractions, model organisms, and basal baloney. Dev Genes Evol 216:385–394. doi:10.1007/s00427-006-0084-5

    Article  PubMed  Google Scholar 

  • Jenner RA, Wills MA (2007) The choice of model organisms in evo-devo. Nat Rev Genet 8:311–319. doi:10.1038/nrg2062

    Article  PubMed  CAS  Google Scholar 

  • Kincaid H, Dupré J, Wylie A (eds) (2007) Value-free science? Ideals and illusions. Oxford University Press, New York

    Google Scholar 

  • Kuhn TS (1977) Objectivity, value judgment, and theory choice. In: The essential tension: selected studies in scientific traditions and change. University of Chicago Press, Chicago, pp 320–339

  • Kulakova M, Bakalenko N, Novikova E, Cook C, Eliseeva E, Steinmetz P, Kostyuchenko R, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217:39–54. doi:10.1007/s00427-006-0119-y

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwiss 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065. doi:10.1038/nature01872

    Article  PubMed  CAS  Google Scholar 

  • Leone CA (1954) Further serological data on the relationships of some decapod crustacea. Evol Int J Org Evol 8:192–205. doi:10.2307/2405439

    Google Scholar 

  • Levit GS, Hoßfeld U, Olsson L (2006) From the “modern synthesis” to cybernetics: Ivan Ivanovich Schmalhausen (1884–1963) and his research program for a synthesis of evolutionary and developmental biology. J Exp Zool 306B:89–106. Mol Dev Evol. doi:10.1002/jez.b.21087

    Google Scholar 

  • Liao B-Y, Zhang J (2008) Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc Natl Acad Sci USA 105:6987–6992. doi:10.1073/pnas.0800387105

    Article  PubMed  CAS  Google Scholar 

  • Longhurst AR (1955) Evolution in the Notostraca. Evol Int J Org Evol 9:84–86. doi:10.2307/2405360

    Google Scholar 

  • Love AC (2003) Evolutionary morphology, innovation, and the synthesis of evolutionary and developmental biology. Biol Philos 18:309–345. doi:10.1023/A:1023940220348

    Article  Google Scholar 

  • Love AC (2006) Evolutionary morphology and evo-devo. Hierarchy novelty. Theory Biosci 124:317–333. doi:10.1016/j.thbio.2005.11.006

    Article  PubMed  Google Scholar 

  • Love AC (2007) Morphological and paleontological perspectives for a history of evo-devo. In: Laubichler M, Maienschein J (eds) From embryology to evo-devo: a history of developmental evolution. MIT Press, Cambridge, pp 267–307

    Google Scholar 

  • Love AC (2008) Explaining evolutionary innovation and novelty: criteria of explanatory adequacy and epistemological prerequisites. Philos Sci (in press)

  • Love AC (2009) The structure of evolutionary theory: philosophical dimensions of an extended evolutionary synthesis. In: Pigliucci M, Müller GB (eds) Toward an extended evolutionary synthesis. MIT Press, Cambridge (forthcoming)

  • Love AC, Raff RA (2003) Knowing your ancestors: themes in the history of evo-devo. Evol Dev 5:327–330. doi:10.1046/j.1525-142X.2003.03040.x

    Article  PubMed  Google Scholar 

  • Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M (2003) Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–865. doi:10.1016/S0092-8674(03)00469-0

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species from the viewpoint of a zoologist. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1954) Geographic speciation in tropical echinoids. Evol Int J Org Evol 8:1–18. doi:10.2307/2405661

    Google Scholar 

  • Mayr E (1960) The emergence of evolutionary novelties. In: Tax S (ed) Evolution after Darwin (vol 1): the evolution of life, its origin, history and future. University of Chicago Press, Chicago, pp 349–380

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • Mayr E (1993) What was the evolutionary synthesis? Trends Ecol Evol 8:31–34. doi:10.1016/0169-5347(93)90128-C

    Article  Google Scholar 

  • Mayr E, Provine WB (eds) (1980) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge

    Google Scholar 

  • McNamara KJ (1997) Shapes of time: the evolution of growth and development. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Medawar PB (1967) The art of the soluble. Methuen, London

    Google Scholar 

  • Metscher BD, Ahlberg PE (1999) Zebrafish in context: uses of a laboratory model in comparative studies. Dev Biol 210:1–14. doi:10.1006/dbio.1999.9230

    Article  PubMed  CAS  Google Scholar 

  • Milinkovitch M, Tzika A (2007) Escaping the mouse trap: the selection of new evo-devo species. J Exp Zool 308B:337–346. Mol Dev Evol. doi:10.1002/jez.b.21180

    Google Scholar 

  • Miller AK (1949) The last surge of the nautiloid cephalopods. Evol Int J Org Evol 3:231–238. doi:10.2307/2405560

    CAS  Google Scholar 

  • Müller GB (2007) Evo-devo: extending the evolutionary synthesis. Nat Rev Genet 8:943–949. doi:10.1038/nrg2219

    Article  PubMed  CAS  Google Scholar 

  • Nederbragt AJ, van Loon AE, Dictus WJAG (2002) Hedgehog crosses the snail’s midline. Nature 417:811–812. doi:10.1038/417811b

    Article  PubMed  CAS  Google Scholar 

  • Newell ND (1947) Infraspecific categories in invertebrate paleontology. Evol Int J Org Evol 1:163–171. doi:10.2307/2405492

    Google Scholar 

  • Newell ND (1949) Phyletic size increase, an important trend illustrated by fossil invertebrates. Evol Int J Org Evol 3:103–124. doi:10.2307/2405545

    CAS  Google Scholar 

  • Newell ND (1956) Catastrophism and the fossil record. Evol Int J Org Evol 10:97–101. doi:10.2307/2406101

    Google Scholar 

  • Pigliucci M (2007) Do we need an extended evolutionary synthesis? Evol Int J Org Evol 61:2743–2749. doi:10.1111/j.1558-5646.2007.00246.x

    Google Scholar 

  • Raff RA (2008) Origins of the other metazoan body plans: the evolution of larval forms. Philos Trans R Soc Lond B Biol Sci 363:1473–1479. doi:10.1098/rstb.2007.2237

    Article  PubMed  Google Scholar 

  • Raff RA, Love AC (2004) Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo-devo. J Exp Zool 302B:19–34. Mol Dev Evol. doi:10.1002/jez.b.20004

    Google Scholar 

  • Rainger R (2001) Subtle Agents for Change: The Journal of Paleontology, J Marvin Weller, and Shifting Emphases in Invertebrate Paleontology. J Paleontol 75:1058–1064. doi:10.1666/0022-3360(2001)075<1058:SAFCTJ>2.0.CO;2

    Article  Google Scholar 

  • Rao KP (1952) Significance of variation in Ptychodera flava. Evol Int J Org Evol 6:342–343. doi:10.2307/2405420

    Google Scholar 

  • Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91

    Google Scholar 

  • Rensch B (1959) Evolution above the species level. Columbia University Press, New York

    Google Scholar 

  • Schindewolf OH (1993 [1950]) Basic questions in paleontology: geologic time, organic evolution, and biological systematics. University of Chicago Press, Chicago

  • Schlegel R (1967) Completeness in science: a study of how completely science may describe the universe. Appleton-Century-Crofts, New York

    Google Scholar 

  • Schmalhausen II (1949) Factors of evolution: the theory of stabilizing selection. The Blakiston Company, Philadelphia

    Google Scholar 

  • Schmalhausen II (1968) The origin of terrestrial vertebrates. Academic Press, New York/London

    Google Scholar 

  • Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York

    Google Scholar 

  • Simpson GG (1949) Essay-review of recent works on evolutionary theory by Rensch, Zimmerman, and Schindewolf. Evol Int J Org Evol 3:178–184. doi:10.2307/2405553

    CAS  Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Smocovitis VB (1996) Unifying biology: the evolutionary synthesis and evolutionary biology. Princeton University Press, Princeton

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stehli FG (1956) Evolution of the loop and lophophore in terebratuloid brachiopods. Evol Int J Org Evol 10:187–200. doi:10.2307/2405893

    Google Scholar 

  • Stenzel HB (1949) Successional speciation in paleontology: the case of the oysters of the Sellaeformis stock. Evol Int J Org Evol 3:34–50. doi:10.2307/2405450

    CAS  Google Scholar 

  • Swan EF (1953) The Strongylocentrotidae (Echinoidea) of the Northeast Pacific. Evol Int J Org Evol 7:269–273. doi:10.2307/2405738

    Google Scholar 

  • Vasseur E (1952) Geographic variation in the norwegian sea-urchins, Strongylocentrotus droebachiensis and S. pallidus. Evol Int J Org Evol 6:87–100. doi:10.2307/2405506

    Google Scholar 

  • Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  • Waddington CH (1953) Epigenetics and evolution. In: Symposia of the society for experimental biology: evolution, vol 7. Academic Press, New York, pp 186–199

    Google Scholar 

  • Waddington CH (1957) The strategy of the genes: a discussion of some aspects of theoretical biology. George Allen and Unwin, London

    Google Scholar 

  • Wheeler JFG (1942) The discovery of the Nemertean Gorgonorhynchus and its bearing on evolutionary theory. Am Nat 76:470–493. doi:10.1086/281069

    Article  Google Scholar 

  • Young CM (2002) A brief history and some fundamentals. In: Young CM (ed) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp 1–8

    Google Scholar 

  • Ziegler B (1959) Evolution in Upper Jurassic ammonites. Evol Int J Org Evol 13:229–235. doi:10.2307/2405875

    Google Scholar 

  • Zimmerman EC (1943) On Wheeler’s paper concerning evolution and the Nemertean Gorgonorhynchus. Am Nat 77:373–376. doi:10.1086/281137

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful for the critical suggestions and feedback provided by Mark Borrello, Ingo Brigandt, Tim Horder, Lennart Olsson, Anya Plutynski, Rudy Raff, and an anonymous reviewer on an earlier version of this paper. Thanks are also due to George Levit and Lennart Olsson for their editorial patience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan C. Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, A.C. Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion. Theory Biosci. 128, 19–42 (2009). https://doi.org/10.1007/s12064-009-0063-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-009-0063-2

Keywords

Navigation