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Culture-area relation in Axelrod’s model for culture dissemination
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Axelrod’s model for culture dissemination offers a nontrivial answer to the question of why there
is cultural diversity given that people’s beliefs have a tendency to become more similar to each
other’s as people interact repeatedly. The answer depends on the two control parameters of the
model, namely, the number F of cultural features that characterize each agent, and the number q

of traits that each feature can take on, as well as on the size A of the territory or, equivalently, on
the number of interacting agents. Here we investigate the dependence of the number C of distinct
coexisting cultures on the area A in Axelrod’s model – the culture-area relationship – through
extensive Monte Carlo simulations. We find a non-monotonous culture-area relation, for which the
number of cultures decreases when the area grows beyond a certain size, provided that q is smaller
than a threshold value qc = qc (F ) and F ≥ 3. In the limit of infinite area, this threshold value
signals the onset of a discontinuous transition between a globalized regime marked by a uniform
culture (C = 1), and a completely polarized regime where all C = qF possible cultures coexist.
Otherwise the culture-area relation exhibits the typical behavior of the species-area relation, i.e.,
a monotonically increasing curve the slope of which is steep at first and steadily levels off at some
maximum diversity value.

I. INTRODUCTION

Axelrod’s model for the dissemination of culture or so-
cial influence [2] is a paradigm for idealized models of
collective behavior which seek to boil down a collective
phenomenon to its functional essence [7]. The main issue
the model addresses is why cultural differences persist
despite the fact that interactions between people tend
to make them more alike in their beliefs and attitudes.
Building on just a few simple principles, Axelrod’s model
provides a highly nontrivial answer to that question. In
that model, an agent is represented by a string of cul-
tural features, where each feature can adopt a certain
number of distinct traits. The interaction between any
two agents takes place with probability proportional to
their cultural similarity, i.e., proportional to the number
of traits they have in common. The result of such inter-
action is the increase of the similarity between the two
agents, as one of them modifies a previously distinct trait
to match that of its partner.

A remarkable aspect of Axelrod’s model is that,
notwithstanding the built-in assumption that social ac-
tors have a tendency to become similar to each other
through local interactions, the model exhibits global po-
larization, i.e., a stable multicultural regime [2]. Sub-
sequent analysis of this model by the statistical physics
community has revealed a rich dynamic behavior with
a nonequilibrium phase transition separating the global
polarization regime from the homogeneous regime, where
a single culture dominates the entire population [3, 13,
14, 26]. An important outcome of those more quantita-
tive studies was the finding that the multicultural regime
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is unstable to a vanishingly small noise that allows for
the agents to spontaneously change their opinions [15]
(see, however, [22]). Several studies of a more qualitative
character have considered generalizations of the original
model such as variability in the agents’ range of commu-
nication and mass media effects (see, e.g., [8, 12, 29]).
These efforts seem to have established Axelrod’s model
as the reference minimal model of social influence or cul-
ture dissemination both in the social and physical sci-
ences [26, 34]. We must note, however, that there are
many alternative models of social influence or opinion
formation which, similarly to Axelrod’s, focus on the in-
terplay between consensus and diversity, and which have
also been extensively studied by the statistical physics
community (see, e.g., [4, 6, 18, 33]).

Despite all the interest raised by Axelrod’s model, a
most appealing outcome of the model – the existence of
a multicultural regime – has been somewhat overlooked
and even obvious questions such as the relation between
the number of coexisting cultures and the area available
to the social agents, i.e., the culture-area relation has not
been fully addressed. This is surprising in view of the
counterintuitive result found by [2] that the number of
coexisting cultures decreases when the area grows beyond
a certain size, which starkly contrasts with the biological
species-area relations characterized by the monotonical
increase of the number of species with the size of the
area of a particular habitat [9, 24, 25, 32].

Axelrod’s model is characterized by two integer-valued
parameters, namely, the list of features or dimensions of
culture F and the number of traits q which are the pos-
sible values each feature can take on. The social agents
live in the sites of a square lattice of linear size L and can
interact with their nearest neighbors only. In this con-
tribution we re-examine the culture-area relation in Ax-
elrod’s model and show that the unusual non-monotonic
behavior occurs only in the regime of F ≥ 3 and q < qc
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where qc = qc (F ) is the number of traits at which the
discontinuous transition takes place in the limit L → ∞.
Otherwise, the culture-area relation exhibits the typical
behavior of the species-area relation – a monotonically
increasing curve the slope of which is steep at first and
steadily levels off at the maximum diversity value qF .
Since there is no ‘intuitive’ reason for the discontinuous
transition to take place at a particular value of q (or to
not occur for F = 2, for instance), we think the non-
monotonical behavior of the culture-area relation has no
first-principle explanation, as sought by [2] in his original
work.

This study is organized as follows: In Sect. II we de-
scribe briefly Axelrod’s model for culture dissemination
and in Sect. III we present and discuss the culture-area
relations obtained from extensive simulations of the two
representative cases F = 2 and F = 3 for which the
transition between the multicultural and homogeneous
regimes is continuous and discontinuous, respectively. Fi-
nally, in Sect. IV we relate our findings to results of mod-
els of language competition [28, 31] and discuss a possible
connection between Axelrod’s model and the Derrida-
Higgs model for sympatric speciation [10, 11, 19].

II. MODEL

As pointed out before, in Axelrod’s model each agent
is characterized by a set of F cultural features which can
take on q distinct values. The agents are fixed in the sites
of a square lattice with open boundary conditions (i.e.,
agents in the corners interact with two neighbors, agents
in the sides with three, and agents in the bulk with four
nearest neighbors). The social agents can be thought of
as individuals or as homogeneous villages. The initial
configuration is completely random with the features of
each agent given by random integers drawn uniformly be-
tween 1 and q. At each time we pick an agent at random
(this is the target agent) as well as one of its neighbors.
These two agents interact with probability equal to their
cultural similarity, defined as the fraction of common cul-
tural features. An interaction consists of selecting at ran-
dom one of the distinct features, and changing the target
agent’s trait on this feature to the neighbor’s correspond-
ing trait. This procedure is repeated until the system is
frozen in an absorbing configuration.

Given the bias towards homogenization, it is really re-
markable that in some cases the system can reach a mul-
ticultural absorbing state. We recall that the sources of
disorder in Axelrod’s model are the stochastic update se-
quence and the choice of the initial configuration: it is the
competition between the disorder of the initial configura-
tion and the ordering bias of the local interactions that
is responsible for the nontrivial threshold phenomenon
reported by [3].

III. SIMULATIONS

A feature that sets our results apart from those re-
ported previously in the literature is that our data points
represent averages over at least 103 independent runs.
This requires a substantial computational effort, espe-
cially in the regime where the number of cultures de-
creases with the lattice size since then the time for ab-
sorption can be as large as 106 ×A where A = L2 is the
lattice area. In the figures presented in the following, the
error bars are smaller or at most equal to the symbol
sizes.
To simulate efficiently Axelrod’s model we make a list

of the active agents. An active agent is an agent that
has at least one feature in common and at least one fea-
ture distinct with at least one of its nearest neighbors.
Clearly, since only active agents can change their cultural
features, it is more efficient to select the target agent ran-
domly from the list of active agents rather than from the
entire lattice. Note that the randomly selected neighbor
of the target agent may not necessarily be an active agent
itself. In the case that the cultural features of the target
agent are modified by the interaction with its neighbor,
we need to re-examine the active/inactive status of the
target agent as well as of all its neighbors so as to update
the list of active agents. The dynamics is frozen when
the list of active agents is empty.
Our focus is on the number of distinct cultures C,

rather than on the number of clusters or the fraction
of the lattice occupied by the largest cluster [3, 13, 14].
In that sense, cultural diasporas, which occurs when
regions with specific cultural features are disconnected
from other regions with the same cultural features [8],
are counted as a single culture. Of course, C is much
easier to compute than the cultural regions and, as we
will show next, provides an equally good indication of
the existence and location of a threshold phenomenon.
In addition, we consider the cases F = 2 and F = 3 only
as, according to [3], the dynamic and static properties of
Axelrod’s model for F > 3 are qualitatively similar to
those for F = 3.
Figure 1 exhibits the culture-area relation for F = 3

and different values of q. The non-monotonic behavior
reported by [2] appears for q < qc = 16 only. For q ≥ qc
the number of cultures increases linearly with increasing
A at first and then gradually flattens when A becomes
on the order of the maximum value, qF . In the limit
L → ∞ we have only two possible outcomes: if q < qc
then C → 1 and a single culture dominates the lattice
(ordered regime), otherwise C → qF and all cultures are
represented in the lattice (disordered regime). The tran-
sition between these two regimes is discontinuous because
C jumps from 1 to qF at q = qc. As mentioned before,
this behavior is expected to occur for all F ≥ 3 with
the threshold value qc = qc (F ) increasing monotonically
with increasing F [3].
Figure 2 summarizes our findings regarding the case

F = 2. The first point to be noted is that, in contrast
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FIG. 1: Logarithmic plot of the culture-area relation for F =
3 and (bottom to top) q = 5, 6, . . . , 16. The dashed horizontal
line indicates the value C = 163. In the limit A → ∞ there
are two distinct regimes: either C → 1 (q < 16) or C → qF

(q ≥ 16).

with the previous case, the culture-area relation exhibits
the expected monotonic behavior, which implies that the
globally homogeneous regime C = 1 does not appear in
the limit A → ∞. But the disordered regime, which
is characterized by the coexistence of all qF cultures, is
present as revealed by the data for q ≥ 4. We can identify
a second regime (see data for q = 2), in which only a frac-
tion of the total number of cultures coexist in the limit
of infinite lattices. In this limit we find C → 1.66± 0.01
for q = 2. It is not clear whether the data for q = 3
will ultimately converge to C = 9: for L = 700 we find
C = 6.91 ± 0.15 but the data show a trend to increase
much further. The very slow convergence may indicate
that q = 3 is the threshold (critical) value that separates
the two regimes. In the case q is allowed to change con-
tinuously (for example, by choosing the trait values as
samples of a Poisson distribution of mean q), [3] have
shown that the transition between these two regimes is
continuous, in the sense that, for A → ∞, C increases
continuously from 1 to q2c as the mean of the Poisson
distribution varies from 0 to qc.
It is instructive to calculate the number of cultures in

the totally disordered initial configuration, in which the
A = L2 agents are assigned one of the any qF cultures.
This is a classical occupancy problem discussed at length
in Feller’s book [5, Ch. IV.2]. In this occupancy problem,
the probability that exactly m cultures are not used in
the assignment of the A agents to the qF cultures is

Pm

(

A, qF
)

=

(

qF

m

) qF−m
∑

ν=0

(

qF −m
ν

)

(−1)
ν

(

1−
m+ ν

qF

)A

,

(1)
which in the limit where A and qF are large reduces to
the Poisson distribution

p (m;λ) = e−λλ
m

m!
(2)
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FIG. 2: Logarithmic plot of the culture-area relation for F =
2 and (bottom to top) q = 2, 3, . . . , 8. The dashed horizontal
lines indicate the maximum diversity values qF to which the
data for q ≥ 4 converge in the limit of infinite area.

where λ = qF exp
(

−A/qF
)

remains bounded [5, Ch.
IV.2]. Hence the average cultural diversity Cr result-
ing from the random assignment of agents to cultures is
simply qF − 〈m〉, which yields

Cr = qF
[

1− exp
(

−A/qF
)]

. (3)

This quantity is a monotonically increasing function of
A which grows linearly in the regime A ≪ qF and tends
to the maximum diversity value qF when A ≫ qF . Fig-
ure 3 shows a comparison between the predictions of Eq.
(3) and the simulation data of Axelrod’s model in the
global polarization (multicultural) regime. Although the
random occupancy hypothesis yields a good qualitative
description of the culture-area relations in this regime,
it consistently overestimates the values for the cultural
diversity. This is expected as the effect of the local in-
teractions in Axelrod’s model is to decrease the cultural
differences between neighboring agents.

IV. CONCLUSION

In contrast with the species-area relation of Biology
for which there are plenty of field data to check the
theoretical proposals [24], in the culture-area relation
there are practically no empirical evidences to back any
quantitative theoretical prediction. However, there are
some empirical results regarding the language-area re-
lation [20, 21], which are appropriate to mention here
since the mechanisms of development, dissemination and
acquisition of language are similar, if not identical, to
those of culture. An extensive analysis of the language
diversity that considers ecological and linguistic variables
for about 74 countries yields C ∝ Ax with x = 0.5 ± 0.1
[20]. In the region qF ≫ A, Axelrod’s model yields also
a power-law scaling but with the exponent x = 1. Given
the crudeness of the model and the inherent difficulties
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FIG. 3: Comparison between the random initial diversity Cr

(solid lines) given by Eq. (3) and the stationary diversity of
Axelrod’s model for F = 3, q = 16 (◦), and F = 2, q = 6 (△).

involved in counting languages, either agreement or dis-
agreement on this matter seems to be of little signifi-
cance. Nevertheless, it should be interesting to find out
whether changes in rules for the local interaction between
agents can affect the value of that exponent. We note
that the area A used in the field studies is the area of the
country, whereas in Axelrod’s model A is the area of the
lattice or, equivalently, the number of agents (population
size). The exponent x is not affected by these different
interpretations of A, provided the population size grows
linearly with the territory area.
Interestingly, extensive Monte Carlo simulations of

a language competition model [28, 31] yield a non-
monotonic relation between the number of languages and
the number of speakers (agents). In fact, the similarity
between the language-area (population size) relation ob-
tained in the case the individuals are placed in the sites
of a scale-free network (see Fig. 4 of [28]) and the rela-
tions shown in Fig. 1 for q < 16 is striking. The model
for language competition proposed by [28] has an impor-
tant element in common with Axelrod’s model – a lan-
guage is defined by F independent features each of which
can take one of q different values. The local interaction
rules, however, are completely distinct and, for instance,
the similarity between the agents’ languages has no role
in determining the occurrence of an interaction. Unless
there is an explicit dependence of the usefulness of a lan-
guage on spatial coordinates [23], the ultimate outcome
of the language competition models is the dominance of
a single language [1] (see, however, [28] for an overview
of language models which may exhibit language coexis-
tence) and so since the source of diversity or randomness
is identical in both models (the initial distribution of lan-
guages and cultures) the similarities pointed out may not

be so surprising after all.
A word is in order about the relevance of Axelrod’s

model for theoretical biology and, in particular, for the
description of the dynamics of species in a habitat. From
the broad perspective, we must point out that the case
for the pertinence of culture to the understanding of the
hominid evolutionary process has been persuasively ad-
vocated by [17] using the biological concept of niche con-
struction [16]. More parochially, however, we can inter-
pret Axelrod’s model as a model for sympatric speciation
based on a mate choice mechanism that depends on the
similarity (genetic distance) between mates (see [27] for
a review of several mechanisms by which sexual selection
can drive speciation). One such model is the Derrida-
Higgs model of species formation [10, 11, 19] in which
mating only occurs between individuals that are genet-
ically similar to each other. This assumption is akin to
the restriction of the interactions in Axelrod’s model to
individuals that share a certain number of cultural traits.
In addition, we can re-interpret cultural assimilation by
the target agent as the result of a sexual reproduction
scheme implemented by a Moran-type stochastic process
in which the target agent is replaced by the offspring
whose genotype is identical to the target’s genotype ex-
cept for a single gene which is inherited from the other
mate. Although a more traditional crossover scheme is
unlikely to change qualitatively the outcome of the com-
petition between dominance and diversity discussed in
this paper, it would be interesting to study the Derrida-
Higgs model of species formation with the individuals
fixed in the lattice sites and the mating restricted to their
nearest neighbors as in Axelrod’s model.
The paucity of empirical data to support and motivate

the proposal of models for culture dissemination and so-
cial influence is about to change as more people become
connected by the Web 2.0 social networks. The on-line
communities in these networks can provide an invaluable
source of data to validate theoretical predictions of mod-
els such as Axelrod’s. In fact, the basic idea that agents
who are similar to each other are more likely to inter-
act (‘birds of a feather flock together’) and then become
even more similar was observed in that context by [30].
Analysis of a population of over 107 people indicates that
people who chat with each other using instant messaging
are more likely to have common interests, as measured by
the similarity of their Web searches, and the more time
they spend talking, the stronger this relationship is.
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