Skip to main content

Advertisement

Log in

Scherrer and Jost’s symposium: the gene concept in 2008

  • Short Communication
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Reconsideration of the term “gene” should take into account (a) the potential clash between hierarchical levels of information discussed in the 1970s by Gregory Bateson, (b) the contrast between conventional and genome phenotypes discussed in the 1980s by Richard Grantham, and (c) the emergence in the 1990s of a new science—Evolutionary Bioinformatics—that views genomes as channels conveying multiple forms of information through the generations. From this perspective, there is conceptual continuity between the functional “gene” of Mendel and today’s GenBank sequences. If the function attributed to a gene can change specifically as the result of a DNA mutation, then the mutated part of DNA can be considered as part of the gene. Conversely, even if appearing to locate within a gene, a mutation that does not change the specific function is not part of the gene, although it may change some other function to which the DNA sequence contributes. This strict definition is impractical, but serves as a guide to more workable, context-dependent, definitions. The gene is either (1) The DNA sequence that is transcribed, (2) The latter plus the immediate 5′ and 3′ sequences that, when mutated, specifically affect the function, (3) The latter two, plus any remote sequences that, when mutated, specifically affect the function. Attempts, such as that of Scherrer and Jost, to redefine Mendel’s “gene,” may be too narrowly focused on regulation to the exclusion of other important themes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817–846

    Article  CAS  PubMed  Google Scholar 

  • Bateson G (1979) Mind and nature. A necessary unity. Dutton, New York, p 21

    Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2009) GenBank. Nucleic Acids Res 37:D26–D31

    Article  CAS  PubMed  Google Scholar 

  • Bernardi G, Bernardi G (1986) Compositional constraints and genome evolution. J Mol Evol 24:1–11

    Article  CAS  PubMed  Google Scholar 

  • Catania F, Lynch M (2008) Where do introns come from? PLoS Biol 6(11):e283

    Article  PubMed  Google Scholar 

  • Cock AG (1977) Bernard’s symposium. The species concept in 1900. Biol J Linn Soc 9:1–30

    Article  Google Scholar 

  • Cock AG, Forsdyke DR (2008) Treasure your exceptions. The science and life of William Bateson. Springer, New York

    Google Scholar 

  • Cristillo AD, Mortimer JR, Barrette IH, Lillicrap TP, Forsdyke DR (2001) Double-stranded RNA as a not-self alarm signal: to evade, most viruses purine-load their RNAs, but some (HTLV-1, Epstein-Barr) pyrimidine-load. J Theor Biol 208:475–491

    Article  CAS  PubMed  Google Scholar 

  • Cristofari G, Darlix J-L (2002) The ubiquitous nature of RNA chaperone proteins. Prog Nucleic Acid Res Mol Biol 72:223–268

    Article  CAS  PubMed  Google Scholar 

  • Daskalogianni C, Apcher S, Candeias MM, Naski N, Calvo F, Fahräeus R (2008) Gly-Ala repeats induce position- and substrate-specific regulation of 26S proteosome-dependent partial processing. J Biol Chem 283:30090–30100

    Article  CAS  PubMed  Google Scholar 

  • Forsdyke DR (2001) The origin of species, revisited. McGill-Queen’s University Press, Montreal

    Google Scholar 

  • Forsdyke DR (2002) Selective pressures that decrease synonymous mutations in Plasmodium falciparum. Trends Parasitol 18:411–418

    Article  CAS  PubMed  Google Scholar 

  • Forsdyke DR (2006) Evolutionary bioinformatics. Springer, New York

    Google Scholar 

  • Forsdyke DR, Mortimer JR (2000) Chargaff’s legacy. Gene 261:127–137

    Article  CAS  PubMed  Google Scholar 

  • Grantham R (1980) Workings of the genetic code. Trends Biochem Sci 5:327–331

    Article  CAS  Google Scholar 

  • Greenberg H, Penman S (1966) Methylation and processing of ribosomal RNA in HeLa cells. J Mol Biol 21:527–535

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PE, Stotz K (2006) Genes in the postgenomic era. Theor Med Bioethics 27:499–521

    Article  Google Scholar 

  • Levitskaya J, Coram M, Levitsky V, Imreh S, Steigerwald-Mullen PM, Klein G, Kurilla MG, Masucci MG (1995) Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375:685–688

    Article  CAS  PubMed  Google Scholar 

  • Levitsky V, Masucci MG (2002) Manipulation of immune responses by Epstein–Barr virus. Virus Res 88:71–86

    Article  CAS  PubMed  Google Scholar 

  • Lewin B (2006) Genes IX. Jones and Bartlett, Sudbury

    Google Scholar 

  • Pfeifer K, Tilghman SM (1994) Allele-specific gene expression in mammals: the curious case of imprinted RNAs. Genes Dev 8:1867–1874

    Article  CAS  PubMed  Google Scholar 

  • Rayment JH, Forsdyke DR (2005) Amino acids as placeholders: base composition pressures on protein length in malaria parasites and prokaryotes. App Bioinformatics 4:117–130

    Article  CAS  Google Scholar 

  • Schaap T (1971) Dual information in DNA and the evolution of the genetic code. J Theor Biol 32:293–298

    Article  CAS  PubMed  Google Scholar 

  • Scherrer K, Darnell JE (1962) Sedimentation characteristics of rapidly labeled RNA from Hela cells. Biochem Biophys Res Comm 7:486–490

    Article  CAS  PubMed  Google Scholar 

  • Scherrer K, Jost J (2007) Gene and genon concept: coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory Biosci 126:65–113

    Article  CAS  PubMed  Google Scholar 

  • Starck SR, Cardinaud S, Shastri N (2008) Immune surveillance obstructed by viral mRNA. Proc Natl Acad Sci USA 105:9135–9136

    Article  CAS  PubMed  Google Scholar 

  • Stoltzfus A, Spencer DF, Zuker M, Logsdon JM, Doolittle WF (1994) Testing the exon theory of genes: the evidence from protein structure. Science 265:202–207

    Article  CAS  PubMed  Google Scholar 

  • Tellam J, Smith C, Rist M, Webb N, Cooper L, Vuocolo T, Connolly G, Tscharke DC, Devoy MP, Khanna R (2008) Regulation of protein translation through mRNA structure influences MHC class 1 loading and T cell recognition. Proc Natl Acad Sci USA 105:9319–9324

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Kapoor P, Frappier L (2002) Separation of the DNA replication, segregation, and transcriptional activation functions of Epstein–Barr nuclear antigen 1. J Virol 76:2480–2490

    Article  CAS  PubMed  Google Scholar 

  • Xue HY, Forsdyke DR (2003) Low complexity segments in Plasmodium falciparum are primarily nucleic acid level adaptations. Mol Biochem Parasitol 128:21–32

    Article  CAS  PubMed  Google Scholar 

  • Yates JL, Camiolo SM (1988) Dissection of DNA replication and enhancer activation functions of Epstein–Barr virus nuclear antigen 1. Cancer Cells 6:197–205

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Klaus Scherrer for suggesting that I be invited to contribute to this debate. Queen’s University hosts my web pages (http://post.queensu.ca/~forsdyke/homepage.htm) where some of the references may be found.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald R. Forsdyke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forsdyke, D.R. Scherrer and Jost’s symposium: the gene concept in 2008. Theory Biosci. 128, 157–161 (2009). https://doi.org/10.1007/s12064-009-0071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-009-0071-2

Keywords

Navigation