Skip to main content
Log in

Punctuated equilibrium in a neontological context

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The theory of punctuated equilibrium, which proposes that biological species evolve rapidly when they originate rather than gradually over time, has sparked intense debate between palaeontologists and evolutionary biologists about the mode of character evolution and the importance of natural selection. Difficulty in interpreting the fossil record prevented consensus, and it remains disputed as to what extent gradual change in established species is responsible for phenotypic differences between species. Against the historical background of the concept of evolution concentrated in speciation events, we review attempts to investigate tempo and mode of evolution using present-day species since the introduction of the theory of punctuated equilibrium in 1972. We discuss advantages, disadvantages, and prospects of using neontological data, methodological advances, and the findings of some recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Historical information in this introduction was obtained from The Friends of the Falconer Museum (www.falconermuseum.co.uk), and the Darwin correspondence project (www.darwinproject.ac.uk) where citations from letters can be found by the dates they were sent.

References

  • Avise JC, Ayala FJ (1975) Genetic change and rates of cladogenesis. Genetics 81:757–773

    CAS  PubMed  Google Scholar 

  • Avise JC, Smith JJ, Ayala FJ (1975) Adaptive differentiation with little genetic change between two native California minnows. Evolution 29:411–426

    Article  Google Scholar 

  • Bak P, Sneppen K (1993) Punctuated equilibrium and criticality in a simple model of evolution. Phys Rev Lett 71:4083–4086

    Article  CAS  PubMed  Google Scholar 

  • Bokma F (2002) Detection of punctuated equilibrium from molecular phylogenies. J Evol Biol 15:1048–1056

    Article  Google Scholar 

  • Bokma F (2003) Testing for differences in rates of speciation between higher taxa. Evolution 57:2469–2474

    PubMed  Google Scholar 

  • Bokma F (2004) Differential rates of morphological divergence in birds. J Evol Biol 17:933–940

    Article  CAS  PubMed  Google Scholar 

  • Bokma F (2008) Detection of “Punctuated Equilibrium” by Bayesian estimation of speciation and extinction rates, ancestral character states, and rates of anagenetic and cladogenetic evolution of a molecular phylogeny. Evolution 62:2718–2726

    Article  PubMed  Google Scholar 

  • Bradshaw HD Jr, Wilbert SM, Otto KG, Schemske DW (1995) Genetic mapping of floral traits associated with reproductive isolation in monkeyflowers (Mimulus). Nature 376:762–765

    Article  CAS  Google Scholar 

  • Bush GL, Case SM, Wilson AC, Patton JL (1977) Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci USA 74:3942–3946

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth B (1982) Hopeful monsters cannot fly. Paleobiology 8:469–474

    Google Scholar 

  • Coyne JA (1995) Speciation in monkeyflowers. Nature 376:726–727

    Article  CAS  Google Scholar 

  • Crispo E (2007) The Baldwin effect and genetic assimilation: revising two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution 61:2469–2479

    Article  PubMed  Google Scholar 

  • De Vries H (1901) Die Mutationstheorie. Versuche und Beobachtungen über die Entstehung von Arten im Pflanzenreich. Veit & Co, Leipzig

  • Eldredge N (1971) The allopatric model and phylogeny in paleozoic invertebrates. Evolution 25:156–167

    Article  Google Scholar 

  • Eldredge N (2000) The pattern of evolution. W.H. Freeman and Company, New York

    Google Scholar 

  • Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman, Cooper and Company, San Fransisco, pp 82–115

    Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W III (2005) The dynamics of evolutionary stasis. Paleobiology 31:133–145

    Article  Google Scholar 

  • Futuyma DJ (1987) On the role of species in anagenesis. Am Nat 130:465–473

    Article  Google Scholar 

  • Futuyma DJ (1997) Evolutionary biology. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • García-Ramos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Article  Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven, CT

    Google Scholar 

  • Gould SJ, Vrba ES (1982) “Exaptation”—a missing term in the science of form. Paleobiology 8:4–15

    Google Scholar 

  • Hansen TF, Houle D (2004) Evolvability, stabilizing selection, and the problem of stasis. In: Pigliucci M, Preston K (eds) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, Oxford, pp 130–150

    Google Scholar 

  • Kohne DE, Chiscon JA, Moyer BH (1972) Evolution of primate DNA sequences. J Hum Evol 1:627–644

    Article  Google Scholar 

  • Kritsky G (1991) Darwin’s Madagascan Hawk Moth prediction. Am Entomol 37:206–209

    Google Scholar 

  • Lind MI, Johansson F (2007) The degree of adaptive phenotypic plasticity is correlated with the special environmental heterogeneity experienced by island populations of Rana temporaria. J Evol Biol 20:1288–1297

    Article  CAS  PubMed  Google Scholar 

  • Liow LH, Fortelius M, Bingham E, Lintulaakso K, Mannila H, Flynn L, Stenseth NC (2008) Higher origination and extinction rates in larger mammals. PNAS 105:6097–6102

    Article  CAS  PubMed  Google Scholar 

  • Mattila TM, Bokma F (2008) Extant mammal body masses suggest punctuated equilibrium. Proc R Soc Lond B 275:2195–2199

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, pp 157–180

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Mayr E (1982) Speciation and macroevolution. Evolution 36:1119–1132

    Article  Google Scholar 

  • Monroe MJ, Bokma F (2009) Do speciation rates drive rates of body size evolution in mammals? Am Nat 174:912–918

    Article  PubMed  Google Scholar 

  • Mooers AO, Vamosi SM, Schluter D (1999) Using phylogenies to test macroevolutionary hypotheses of trait evolution in cranes (Gruinae). Am Nat 154:249–259

    Article  Google Scholar 

  • Nee S, May R, Harvey P (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond B 344:305–311

    Article  CAS  Google Scholar 

  • Oakley TH, Gu Z, Abouheif E, Patel NH, Li WH (2005) Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data. Mol Biol Evol 22:40–50

    Article  CAS  PubMed  Google Scholar 

  • Purvis A (2004) Evolution: how do characters evolve? Nature 432:1

    Article  PubMed  Google Scholar 

  • Ricklefs RE (2004) Cladogenesis and morphological diversification in passerine birds. Nature 430:338–341

    Article  CAS  PubMed  Google Scholar 

  • Ridley M (2004) Evolution, 3rd edn. Blackwell Publishing Company, Oxford, UK

    Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Simpson GG (1944) Tempo and mode of evolution. Columbia University Press, New York

    Google Scholar 

  • Smith FA, Lyons SK, Ernest SK M, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84:3402

    Article  Google Scholar 

  • Stanley SM (1975) A theory of evolution above the species level. Proc Natl Acad Sci USA 72:646–650

    Article  CAS  PubMed  Google Scholar 

  • Stanley SM (1998) Macroevolution: pattern and process. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Stebbins GL, Ayala FJ (1981) Is a new evolutionary synthesis necessary? Science 213:967–971

    Article  CAS  PubMed  Google Scholar 

  • Templeton AR (1982) Why read Goldschmidt? Paleobiology 8:474–481

    Google Scholar 

  • Wake DB, Roth G, Wake M (1983) On the problem of stasis in organismal evolution. J Theor Biol 101:211–224

    Article  Google Scholar 

  • Webster AJ, Payne RJH, Pagel M (2003) Molecular phylogenies link rates of evolution and speciation. Science 301:478

    Article  CAS  PubMed  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 477:706–710

    Article  Google Scholar 

  • Williams GC (1992) Natural selection: domains, levels, and challenges. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folmer Bokma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroe, M.J., Bokma, F. Punctuated equilibrium in a neontological context. Theory Biosci. 129, 103–111 (2010). https://doi.org/10.1007/s12064-010-0087-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0087-7

Keywords