Skip to main content
Log in

The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin

  • Review
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Geographical variation in environmental temperatures is expected to impose clinal phenotypic selection that results in the expression of large-scale gradients of body mass variation within animal clades. Body size is predicted to increase with increasing latitude and elevation, and hence, with decreasing temperature, a pattern broadly known as Bergmann’s rule. However, empirical observations are highly conflicting. Whilst most studies support this prediction in endotherms (birds and mammals), analyses conducted on ectotherms often fail to report this pattern. Does it reduce the validity of this macroecological rule? Since the original formulation of Bergmann’s rule only involved endothermic organisms, I argue that the controversy is not a consequence of its predictive power, but a result of the later inclusion of ectotherms as part of the prediction. Here, I propose that the common conception of Bergmann’s rule maintained for half a century is changed back to its original definition restricted to endotherms. This temperature–size relationship might therefore consolidate as a well-established macroecological rule if its original formulation is respected. Finally, I develop these claims on my initial suggestion that Bergmann’s rule should be recognized as the evolutionary outcome of a general process with no phylogenetic scale distinction of species or populations, being equally applicable amongst and within species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams DC, Church JO (2008) Amphibians do not follow Bergmann’s rule. Evolution 62:413–420

    Article  PubMed  Google Scholar 

  • Angilletta MJ (2009) Thermal adaptation. A theoretical and empirical synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Nat 162:332–342

    Article  PubMed  Google Scholar 

  • Angilletta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Ashton KG (2002a) Do amphibians follow Bergmann’s rule? Can J Zool 80:708–716

    Google Scholar 

  • Ashton KG (2002b) Patterns of within species body size variation of birds: strong evidence for Bergmann’s rule. Glob Ecol Biogeogr 11:505–523

    Article  Google Scholar 

  • Ashton KG, Feldman CR (2003) Bergmann’s rule in nonavian reptiles: turtles follow it, lizards and snakes reverse it. Evolution 57:1151–1163

    PubMed  Google Scholar 

  • Ashton KG, Tracy MC, de Queiroz A (2000) Is Bergmann’s rule valid for mammals? Am Nat 156:390–415

    Google Scholar 

  • Atkinson D (1994) Temperature and organism size: a biological law for ectotherms. Adv Ecol Res 25:1–58

    Article  Google Scholar 

  • Barlow ND (1994) Size distributions of butterfly species and the effect of latitude on species sizes. Oikos 71:326–332

    Article  Google Scholar 

  • Belk MC, Houston DD (2002) Bergmann’s rule in ectotherms: a test using freshwater fishes. Am Nat 160:803–808

    Article  PubMed  Google Scholar 

  • Bergmann C (1847) Ueber die Verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Gottinger Studien 3:595–708

    Google Scholar 

  • Blackburn TM, Gaston KJ (1996) Spatial patterns in the body sizes of bird species in the New World. Oikos 77:436–446

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ (2003) Macroecology. Concepts and consequences. Blackwell, Oxford

    Google Scholar 

  • Blackburn TM, Hawkins BA (2004) Bergmann’s rule and the mammal fauna of northern North America. Ecography 27:715–724

    Article  Google Scholar 

  • Blackburn TM, Ruggiero A (2001) Latitude, elevation and body mass variation in Andean passerine birds. Glob Ecol Biogeogr 10:245–259

    Article  Google Scholar 

  • Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule. Divers Distrib 5:165–174

    Article  Google Scholar 

  • Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? Integr Comp Biol 44:413–424

    Article  Google Scholar 

  • Brennan JM, Fairbairn DJ (1995) Clinal variation in morphology among eastern populations of the waterstrider, Aquarius remigis Say (Hemiptera, Gerridae). Biol J Linn Soc 54:151–171

    Google Scholar 

  • Brown JH, Sibly RM (2006) Life-history evolution under a production constraint. Proc Natl Acad Sci USA 103:17595–17599

    Article  CAS  PubMed  Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Massachusetts

    Google Scholar 

  • Cruz FB, Fitzgerald LA, Espinoza RE, Schulte JA (2005) The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: lessons from a clade of South American lizards. J Evol Biol 18:1559–1574

    Article  CAS  PubMed  Google Scholar 

  • Cushman JH, Lawton JH, Manly BFJ (1993) Latitudinal patterns in Europe ant assemblages: variation in species richness and body size. Oecologia 95:30–37

    Google Scholar 

  • Cvetkovic D, Tomasevic N, Ficetola GF, Crnobrnja-Isailovic J, Miaud C (2009) Bergmann’s rule in amphibians: combining demographic and ecological parameters to explain body size variation among populations in the common toad Bufo bufo. J Zool Syst Evol Res 47:171–180

    Article  Google Scholar 

  • Dayan T, Simberloff D, Tchernov E, Yom-Tov Y (1991) Calibrating the paleothermometer: climate, communities, and the evolution of size. Paleobiology 17:189–199

    Google Scholar 

  • de Queiroz A, Ashton KG (2004) The phylogeny of a species-level tendency: species heritability and possible deep origins of Bergmann’s rule in tetrapods. Evolution 58:1674–1684

    Article  PubMed  Google Scholar 

  • Diniz-Filho JAF, Fowler HG (1998) Honey ants (genus Myrmecocystus) macroecology: effect of spatial patterns on the relationship between worker body size and geographic range size. Environ Entomol 27:1094–1101

    Google Scholar 

  • Feder ME, Papenfuss TJ, Wake DB (1982) Body size and elevation in neotropical salamanders. Copeia 1982:186–188

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2003) Bergmann’s rule and body size in mammals. Am Nat 161:821–825

    Article  PubMed  Google Scholar 

  • Gaston KJ, Blackburn TM (1996) Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes. J Anim Ecol 65:701–714

    Article  Google Scholar 

  • Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Massachusetts

    Book  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Guppy CS (1986) Geographic variation in wing melanism of the butterfly Parnassius phoebus F. (Lepidoptera: Papilionidae). Can J Zool 64:956–962

    Article  Google Scholar 

  • Hawkins BA (1995) Latitudinal body-size gradients for the bees of the eastern United States. Ecol Entomol 20:195–198

    Article  Google Scholar 

  • Hawkins BA, Lawton JH (1995) Latitudinal gradients in butterfly body sizes: is there a general pattern? Oecologia 102:31–36

    Google Scholar 

  • Hovanitz W (1942) Genetic and ecologic analyses of wild populations in Lepidoptera. I. Pupal size and weight variation in some California populations of Melitaea chalcedona. Ecology 23:175–188

    Article  Google Scholar 

  • Huey RB, Berrigan D (2001) Temperature, demography, and ectotherm fitness. Am Nat 158:204–210

    Article  CAS  PubMed  Google Scholar 

  • Isaac NJB, Mallet J, Mace GM (2004) Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol Evol 19:464–469

    Article  PubMed  Google Scholar 

  • James FC (1970) Geographic size variations in birds and its relationship with climate. Ecology 51:365–390

    Article  Google Scholar 

  • Kaspari M, Vargo EL (1995) Colony size as a buffer against seasonality: Bergmann’s rule in social insects. Am Nat 145:610–632

    Article  Google Scholar 

  • Lindsey CC (1966) Body sizes of poikilotherm vertebrates at different latitudes. Evolution 20:456–465

    Article  Google Scholar 

  • Masaki S (1967) Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae). Evolution 21:725–741

    Article  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1956) Geographical character gradients and climatic adaptation. Evolution 10:105–108

    Article  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • McNab BK (1971) On the ecological significance of Bergmann’s rule. Ecology 52:845–854

    Article  Google Scholar 

  • Medina AI, Martí DA, Bidau CJ (2007) Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J Biogeogr 34:1439–1454

    Article  Google Scholar 

  • Meiri S, Dayan T (2003) On the validity of Bergmann’s rule. J Biogeogr 30:331–351

    Article  Google Scholar 

  • Meiri S, Mace GM (2007) New taxonomy and the origin of species. PLoS Biol 5:1385–1386

    Article  CAS  Google Scholar 

  • Meiri S, Thomas GH (2007) The geography of body size—challenges of the interspecific approach. Glob Ecol Biogeogr 16:689–693

    Article  Google Scholar 

  • Meiri S, Dayan T, Simberloff D (2004) Carnivores, biases and Bergmann’s rule. Biol J Linn Soc 81:579–588

    Article  Google Scholar 

  • Meiri S, Yom-Tov Y, Geffen E (2007) What determines conformity to Bergmann’s rule? Global Ecology and Biogeography 16:788-794

    Google Scholar 

  • Miller WE (1991a) Body size in North American Lepidoptera as related to geography. J Lepid Soc 45:158–168

    Google Scholar 

  • Miller WE (1991b) Positive relation between body size and altitude of capture site in Tortricid moths (Tortricidae). J Lepid Soc 45:66–67

    Google Scholar 

  • Millien V, Lyons SK, Olson L, Smith FA, Wilson AB, Yom-Tov Y (2006) Ecotypic variation in the context of global climate change: revisiting the rules. Ecol Lett 9:853–869

    Article  PubMed  Google Scholar 

  • Olalla-Tarraga MA, Rodríguez MA (2007) Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergmann’s rule, urodeles its converse. Glob Ecol Biogeogr 16:606–617

    Article  Google Scholar 

  • Olalla-Tarraga MA, Rodríguez MA, Hawkins BA (2006) Broad-scale patterns of body size in squamate reptiles of Europe and North America. J Biogeogr 33:781–793

    Article  Google Scholar 

  • Olson VA, Davies RG, Orme CDL, Thomas GH, Meiri S, Blackburn TM, Gaston KJ, Owens IPF, Bennett PM (2009) Global biogeography and ecology of body size in birds. Ecol Lett 12:249–259

    Article  PubMed  Google Scholar 

  • Park O (1949) Application of the converse Bergmann principle to the carabid beetle, Dicaelus purpuratus. Physiol Zool 22:359–372

    CAS  PubMed  Google Scholar 

  • Partridge L, Coyne JA (1997) Bergmann’s rule in ectotherms: is it adaptive? Evolution 51:632–635

    Article  Google Scholar 

  • Pigliucci M (2001) Phenotypic plasticity. Beyond nature and nurture. Johns Hopkins University Press, Maryland

    Google Scholar 

  • Pincheira-Donoso D, Tregenza T, Hodgson DJ (2007) Body size evolution in South American Liolaemus lizards of the boulengeri clade: a contrasting reassessment. J Evol Biol 20:2067–2071

    Article  CAS  PubMed  Google Scholar 

  • Pincheira-Donoso D, Hodgson DJ, Tregenza T (2008) The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol Biol 8:68

    Google Scholar 

  • Porter EE, Hawkins BA (2001) Latitudinal gradients in colony size for social insects: termites and ants show different patterns. Am Nat 157:97–106

    Article  CAS  PubMed  Google Scholar 

  • Poulin R (1995) Evolutionary influences on body size in free-living and parasitic isopods. Biol J Linn Soc 54:231–244

    Article  Google Scholar 

  • Poulin R, Hamilton WJ (1995) Ecological determinants of body size and clutch size in amphipods: a comparative approach. Funct Ecol 9:364–370

    Article  Google Scholar 

  • Ray C (1960) The application of Bergmann’s and Allen’s rules to the poikilotherms. J Morphol 106:85–108

    Article  CAS  PubMed  Google Scholar 

  • Rensch B (1938) Some problems of geographical variation and species-formation. Proc Linn Soc Lond 150:275–285

    Google Scholar 

  • Rodríguez MA, López-Sañudo IL, Hawkins BA (2006) The geographic distribution of mammal body size in Europe. Glob Ecol Biogeogr 15:173–181

    Article  Google Scholar 

  • Rodríguez MA, Olalla-Tárraga MA, Hawkins BA (2008) Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Glob Ecol Biogeogr 17:274–283

    Article  Google Scholar 

  • Rothschild W, Jordan K (1906) A revision of the American Papilios. Novit Zool 13:411–752

    Google Scholar 

  • Schuster O (1950) Die klimaparallele Ausbildung der Körperproportionen bei Poikilothermen. Abh. Senckenb. Naturforsch Ges 482:1–89

    Google Scholar 

  • Sears MW, Angilletta MJ (2004) Body size clines in Sceloporus lizards: proximate mechanisms and demographic constraints. Integr Comp Biol 44:433–442

    Article  Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857

    Article  CAS  Google Scholar 

  • Thomas GH (2009) Bergmann’s idiosyncratic rule: a role for fecundity selection? Mol Ecol 18:1027–1029

    Google Scholar 

  • Tinkle DW (1961) Geographic variation in reproduction, size, sex ratio and maturity of Sternothaerus odoratus. Ecology 42:68–76

    Article  Google Scholar 

  • Tomilin AG (1946) Thermoregulation and the geographical races of cetaceans. C R Doklady l’Acad Sci URSS 54:465–468

    Google Scholar 

  • Van Voorhies WA (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50:1259–1264

    Article  Google Scholar 

  • Van Voorhies WA (1997) On the adaptive nature of Bergmann size cline: a reply to Mousseau, Partridge and Coyne. Evolution 51:635–640

    Article  Google Scholar 

  • Walters RJ, Hassall M (2006) The temperature-size rule in ectotherms: may a general explanation exist after all? Am Nat 167:510–523

    Google Scholar 

  • Watt C, Mitchell S, Salewski V (2010) Bergmann’s rule; a concept cluster? Oikos 119:89–100

    Google Scholar 

  • Wilson AB (2009) Fecundity selection predicts Bergmann’s rule in syngnathid fishes. Mol Ecol 18:1263–1272

    Article  PubMed  Google Scholar 

  • Wilson EO, Brown WL (1953) The subspecies concept and its taxonomic application. Syst Zool 2:97–111

    Article  Google Scholar 

  • Zeveloff SI, Boyce MS (1988) Body size patterns in North American mammal faunas. In: Boyce MS (ed) Evolution of life histories of mammals. Yale University Press, New Haven, pp 123–146

    Google Scholar 

  • Zink RM, Remsen JV (1986) Evolutionary processes and patterns of geographic variation in birds. In: Johnston RF (ed) Current ornithology, vol 4. Plenum Press, New York, pp 1–69

    Google Scholar 

Download references

Acknowledgements

I thank Tom Tregenza, John Hunt and Dave Hodgson for constant support and encouragement. Jan Stipala and Gavin Thomas provided valuable and insightful comments on earlier versions of this manuscript. Wiebke Schuett kindly helped to translate German texts into English. Shai Meiri and an anonymous referee offered insightful comments on the original manuscript. DP-D is fully supported by the Leverhulme Trust through Postdoctoral Research funding from a Leverhulme Research Grant, and has received partial support from Oxford University Press.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pincheira-Donoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pincheira-Donoso, D. The balance between predictions and evidence and the search for universal macroecological patterns: taking Bergmann’s rule back to its endothermic origin. Theory Biosci. 129, 247–253 (2010). https://doi.org/10.1007/s12064-010-0101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-010-0101-0

Keywords