Skip to main content
Log in

New approaches to the problem of generating coherent, reproducible phenotypes

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Fundamental, unresolved questions in biology include how a bacterium generates coherent phenotypes, how a population of bacteria generates a coherent set of such phenotypes, how the cell cycle is regulated and how life arose. To try to help answer these questions, we have developed the concepts of hyperstructures, competitive coherence and life on the scales of equilibria. Hyperstructures are large assemblies of macromolecules that perform functions. Competitive coherence describes the way in which organisations such as cells select a subset of their constituents to be active in determining their behaviour; this selection results from a competition between a process that is responsible for a historical coherence and another process responsible for coherence with the current environment. Life on the scales of equilibria describes how bacteria depend on the cell cycle to negotiate phenotype space and, in particular, to satisfy the conflicting constraints of having to grow in favourable conditions so as to reproduce yet not grow in hostile conditions so as to survive. Both competitive coherence and life on the scales deal with the problem of reconciling conflicting constraints. Here, we bring together these concepts in the common framework of hyperstructures and make predictions that may be tested using a learning program, Coco, and secondary ion mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science (New York) 305:1622–1625

    CAS  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113. doi:10.1038/nrg1272

    CAS  PubMed  Google Scholar 

  • Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65:189–213. doi:10.1146/annurev-micro-090110-102946

    CAS  PubMed  Google Scholar 

  • Benford G (1995) Old legends. In: Bear G (ed) New legends. Legend Books, London, pp 292–306

    Google Scholar 

  • Berger M, Farcas A, Geertz M, Zhelyazkova P, Brix K, Travers A, Muskhelishvili G (2010) Coordination of genomic structure and transcription by the main bacterial nucleoid-associated protein HU. EMBO Rep 11(1):59–64. doi:10.1038/embor.2009.232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Binenbaum Z, Parola AH, Zaritsky A, Fishov I (1999) Transcription- and translation-dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation. Mol Microbiol 32:1173–1182

    CAS  PubMed  Google Scholar 

  • Booth IR (2002) Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int J Food Microbiol 78:19–30

    PubMed  Google Scholar 

  • Boxer SG, Kraft ML, Weber PK (2009) Advances in imaging secondary ion mass spectrometry for biological samples. Annu Rev Biophys 38:53–74. doi:10.1146/annurev.biophys.050708.133634

    CAS  PubMed  Google Scholar 

  • Bray D (2012) The propagation of allosteric states in large multiprotein complexes. J Mol Biol. doi:10.1016/j.jmb.2012.12.008

  • Briers Y, Staubli T, Schmid MC, Wagner M, Schuppler M, Loessner MJ (2012) Intracellular vesicles as reproduction elements in cell wall-deficient L-form bacteria. PloS one 7(6):e38514. doi:10.1371/journal.pone.0038514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cabin-Flaman A, Monnier AF, Coffinier Y, Audinot JN, Gibouin D, Wirtz T, Boukherroub R, Migeon HN, Bensimon A, Janniere L, Ripoll C, Norris V (2011) Combed single DNA molecules imaged by secondary ion mass spectrometry. Anal Chem 83(18):6940–6947. doi:10.1021/ac201685t

    CAS  PubMed  Google Scholar 

  • Cabrera JE, Jin DJ (2003) The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues. Mol Microbiol 50:1493–1505

    CAS  PubMed  Google Scholar 

  • Cabrera JE, Cagliero C, Quan S, Squires CL, Jin DJ (2009) Active transcription of rRNA operons condenses the nucleoid in Escherichia coli: examining the effect of transcription on nucleoid structure in the absence of transertion. J Bacteriol 191(13):4180–4185. doi:10.1128/JB.01707-08

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng S, Liu Y, Crowley CS, Yeates TO, Bobik TA (2008) Bacterial microcompartments: their properties and paradoxes. BioEssays 30(11–12):1084–1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cooper S, Shedden K, Vu-Phan D (2009) Invariant mRNA and mitotic protein breakdown solves the Russian Doll problem of the cell cycle. Cell Biol Int 33(1):10–18. doi:10.1016/j.cellbi.2008.10.004

    CAS  PubMed  Google Scholar 

  • Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL (2010) Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. Proc Natl Acad Sci USA 107(7):3163–3168

    PubMed Central  PubMed  Google Scholar 

  • Demarty M, Gleyse B, Raine D, Ripoll C, Norris V (2003) Modelling autocatalytic networks with artificial microbiology. Comptes Rendus de l’Academie des Sciences 326:459–466

    CAS  Google Scholar 

  • Echtenkamp PL, Wilson DB, Shuler ML (2009) Cell cycle progression in Escherichia coli B/r affects transcription of certain genes: implications for synthetic genome design. Biotechnol Bioeng 102(3):902–909. doi:10.1002/bit.22098

    CAS  PubMed  Google Scholar 

  • Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U (2011) Proteomehalf-life dynamics in living human cells. Science (New York) 331(6018):764–768. doi:10.1126/science.1199784

    CAS  Google Scholar 

  • Espeli O, Mercier R, Boccard F (2008) DNA dynamics vary according to macrodomain topography in the E. coli chromosome. Mol Microbiol 68(6):1418–1427

    CAS  PubMed  Google Scholar 

  • Exley R, Zouine M, Pernelle J–J, Beloin C, Le Hegarat F, Deneubourg AM (2001) A possible role for L24 of Bacillus subtilis in nucleoid organization and segregation. Biochimie 83:269–275

    CAS  PubMed  Google Scholar 

  • Fell DA, Wagner A (2000) The small world of metabolism. Nat Biotechnol 18(11):1121–1122. doi:10.1038/81025

    CAS  PubMed  Google Scholar 

  • Ferguson ML, Le Coq D, Jules M, Aymerich S, Radulescu O, Declerck N, Royer CA (2012) Reconciling molecular regulatory mechanisms with noise patterns of bacterial metabolic promoters in induced and repressed states. Proc Natl Acad Sci USA 109(1):155–160. doi:10.1073/pnas.1110541108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fishov I, Norris V (2012) Membrane heterogeneity created by transertion is a global regulator in bacteria. Curr Opin Microbiol 15(6):724–730. doi:10.1016/j.mib.2012.11.001

    CAS  PubMed  Google Scholar 

  • Fishov I, Zaritsky A, Grover NB (1995) On microbial states of growth. Mol Microbiol 15:789–794

    CAS  PubMed  Google Scholar 

  • Gangwe Nana G, Gibouin D, Lefebvre F, Delaune A, Jannière L, Ripoll C, Cabin-Flaman A, Norris V (2012) Intracellular and population heterogeneity in Bacillus subtilis revealed by secondary ion mass spectrometry. In: Amar P, Képès F, Norris V (eds) Modelling complex biological systems in the context of genomics. EDP Sciences, Evry, pp 79–84

    Google Scholar 

  • Garcia-Betancur JC, Yepes A, Schneider J, Lopez D (2012) Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry. J Vis Exp 15(60):1–8. doi:10.3791/3796

    Google Scholar 

  • Ghosh S, Sureka K, Ghosh B, Bose I, Basu J, Kundu M (2011) Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst Biol 5:18. doi:10.1186/1752-0509-5-18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Godin M, Delgado FF, Son S, Grover WH, Bryan AK, Tzur A, Jorgensen P, Payer K, Grossman AD, Kirschner MW, Manalis SR (2010) Using buoyant mass to measure the growth of single cells. Nat Methods 7(5):387–390. doi:10.1038/nmeth.1452

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gowrishankar J, Harinarayanan R (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54:598–603

    CAS  PubMed  Google Scholar 

  • Guelzim N, Bottani S, Bourgine P, Kepes F (2002) Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 31:60–63

    CAS  PubMed  Google Scholar 

  • Guerquin-Kern JL, Wu TD, Quintana C, Croisy A (2005) Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim Biophys Acta 1724(3):228–238

    CAS  PubMed  Google Scholar 

  • Herskovits AA, Seluanov A, Rajsbaum R, ten Hagen-Jongman CM, Henrichs T, Bochkareva ES, Phillips GJ, Probst FJ, Nakae T, Ehrmann M, Luirink J, Bibi E (2001) Evidence for coupling of membrane targeting and function of the signal recognition particle (SRP) receptor FtsY. EMBO Rep 2(11):1040–1046. doi:10.1093/embo-reports/kve226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hintze A, Adami C (2008) Evolution of complex modular biological networks. PLoS Comput Biol 4(2):e23. doi:10.1371/journal.pcbi.0040023

    PubMed Central  PubMed  Google Scholar 

  • Huang R, Reusch RN (1996) Poly(3-hydroxybutyrate) is associated with specific proteins in the cytoplasm and membranes of Escherichia coli. J Biol Chem 271:22196–22202

    CAS  PubMed  Google Scholar 

  • Hunding A, Kepes F, Lancet D, Minsky A, Norris V, Raine D, Sriram K, Root-Bernstein R (2006) Compositional complementarity and prebiotic ecology in the origin of life. BioEssays 28(4):399–412

    CAS  PubMed  Google Scholar 

  • Iost I, Dreyfus M (1995) The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J 14(13):3252–3261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Junier I, Martin O, Kepes F (2010) Spatial and topological organization of DNA chains induced by gene co-localization. PLoS Comput Biol 6(2):e1000678. doi:10.1371/journal.pcbi.1000678

    PubMed Central  PubMed  Google Scholar 

  • Kaprelyants AS, Mukamolova GV, Davey HM, Kell DB (1996) Quantitative analysis of the physiological heterogeneity within starved cultures of micrococcus luteus by flow cytometry and cell sorting. Appl Environ Microbiol 62(4):1311–1316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kashtan N, Mayo AE, Kalisky T, Alon U (2009) An analytically solvable model for rapid evolution of modular structure. PLoS Comput Biol 5(4):e1000355. doi:10.1371/journal.pcbi.1000355

    PubMed Central  PubMed  Google Scholar 

  • Kauffman S (1996) At home in the universe, the search for the laws of complexity. Penguin, London

    Google Scholar 

  • Kaufmann SA (1993) The origins of order. Oxford University Press, New York

    Google Scholar 

  • Kogoma T (1997) Stable DNA replication: interplay between DNA replication, homologous recombination and transcription. Microbiol Mol Biol Rev 61:212–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lambert G, Liao D, Vyawahare S, Austin RH (2011) Anomalous spatial redistribution of competing bacteria under starvation conditions. J Bacteriol 193(8):1878–1883. doi:10.1128/JB.01430-10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaver M, Dominguez-Cuevas P, Coxhead JM, Daniel RA, Errington J (2009) Life without a wall or division machine in Bacillus subtilis. Nature 457(7231):849–853

    CAS  PubMed  Google Scholar 

  • Lechene C, Hillion F, McMahon G, Benson D, Kleinfeld AM, Kampf JP, Distel D, Luyten Y, Bonventre J, Hentschel D, Park KM, Ito S, Schwartz M, Benichou G, Slodzian G (2006) High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry. J Biol 5(6):20

    PubMed Central  PubMed  Google Scholar 

  • Lemke JL (2000) Opening up closure. Semiotics across scales. Ann NY Acad Sci 901:100–111

    PubMed  Google Scholar 

  • Libby EA, Roggiani M, Goulian M (2012) Membrane protein expression triggers chromosomal locus repositioning in bacteria. Proc Natl Acad Sci USA 109(19):7445–7450. doi:10.1073/pnas.1109479109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livolant FY, Bouligand Y (1978) New observations on the twisted arrangement of dinoflagellate chromosomes. Chromosoma 68:21–44

    Google Scholar 

  • Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through co-transcriptional synthesis of polypeptides encoding membrane proteins or proteins for export : a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathieu LG, Sonea S (1995) A powerful bacterial world. Endeavour 19:112–117

    CAS  PubMed  Google Scholar 

  • Matsuhashi M, Pankrushina AN, Takeuchi S, Ohshima H, Miyoi H, Endoh K, Murayama K, Watanabe H, Endo S, Tobi M, Mano Y, Hyodo M, Kobayashi T, Kaneko T, Otani S, Yoshimura S, Harata A, Sawada T (1998) Production of sound waves by bacterial cells and the response of bacterial cells to sound. J Gen Appl Microbiol 44(1):49–55

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Kusaka J, Nishibori A, Hara H (2006) Lipid domains in bacterial membranes. Mol Microbiol 61(5):1110–1117

    CAS  PubMed  Google Scholar 

  • Mayer F (2006) Cytoskeletal elements in bacteria Mycoplasma pneumoniae, Thermoanaerobacterium sp., and Escherichia coli as revealed by electron microscopy. J Mol Microbiol Biotechnol 11(3–5):228–243

    CAS  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2000) Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J Bacteriol 182:1172–1175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mileykovskaya E, Dowhan W (2009) Cardiolipin membrane domains in prokaryotes and eukaryotes. Biochim Biophys Acta 1788(10):2084–2091. doi:10.1016/j.bbamem.2009.04.003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller OL Jr, Hamkalo BA, Thomas CA Jr (1970) Visualization of bacterial genes in action. Science (New York) 169(943):392–395

    Google Scholar 

  • Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev Mol Cell Biol 3:50–60

    CAS  PubMed  Google Scholar 

  • Musat N, Halm H, Winterholler B, Hoppe P, Peduzzi S, Hillion F, Horreard F, Amann R, Jorgensen BB, Kuypers MM (2008) A single-cell view on the ecophysiology of anaerobic phototrophic bacteria. Proc Natl Acad Sci USA 105(46):17861–17866. doi:10.1073/pnas.0809329105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Musat N, Foster R, Vagner T, Adam B, Kuypers MM (2012) Detecting metabolic activities in single cells, with emphasis on nanoSIMS. FEMS Microbiol Rev 36(2):486–511. doi:10.1111/j.1574-6976.2011.00303.x

    CAS  PubMed  Google Scholar 

  • Naseem R, Wann KT, Holland IB, Campbell AK (2009) ATP regulates calcium efflux and growth in E. coli. J Mol Biol 391(1):42–56. doi:10.1016/j.jmb.2009.05.064

    CAS  PubMed  Google Scholar 

  • Norris V (1995) Hypothesis: chromosome separation in E. coli involves autocatalytic gene expression, transertion and membrane domain formation. Mol Microbiol 16:1051–1057

    CAS  PubMed  Google Scholar 

  • Norris V (1998) Modelling E. coli: the concept of competitive coherence. Comptes Rendus de l’Academie des Sciences 321:777–787

    CAS  PubMed  Google Scholar 

  • Norris V (2007) Could phase oscillations occur in bacteria? In: Amar P, Kepes F, Norris V, Bernot G (eds) Modelling complex biological systems in the context of genomics. EDP Sciences, Evry, pp 89–98

    Google Scholar 

  • Norris V (2011) Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. Med Hypotheses 76(5):706–716. doi:S0306-9877(11)00053-310.1016/j.mehy.2011.02.002

    CAS  PubMed  Google Scholar 

  • Norris V (2012) Competitive coherence. In: Azari NP, Runehov A, Oviedo L (eds) Encyclopedia of sciences and religions. Springer, New York

    Google Scholar 

  • Norris V, Amar P (2012) Chromosome replication in Escherichia coli: life on the scales. Life 2(4):286–312

    Google Scholar 

  • Norris V, Hyland GJ (1997) Do bacteria “sing”? Mol Microbiol 24:879–880

    CAS  PubMed  Google Scholar 

  • Norris V, Raine DJ (1998) A fission-fusion origin for life. Orig Life Evol Biosph 28:523–537

    CAS  PubMed  Google Scholar 

  • Norris V, Cabin A, Zemirline A (2005) Hypercomplexity. Acta Biotheor 53(4):313–330

    PubMed  Google Scholar 

  • Norris V, Blaauwen TD, Doi RH, Harshey RM, Janniere L, Jimenez-Sanchez A, Jin DJ, Levin PA, Mileykovskaya E, Minsky A, Misevic G, Ripoll C, Saier M Jr., Skarstad K, Thellier M (2007) Toward a hyperstructure taxonomy. Ann Rev Microbiol 61:309-329

    Google Scholar 

  • Norris V, Hunding A, Kepes F, Lancet D, Minsky A, Raine D, Root-Bernstein R, Sriram K (2007b) Question 7: the first units of life were not simple cells. Orig Life Evol Biosph 37(4–5):429–432

    PubMed  Google Scholar 

  • Norris V, Zemirline A, Amar P, Audinot JN, Ballet P, Ben-Jacob E, Bernot G, Beslon G, Cabin A, Fanchon E, Giavitto JL, Glade N, Greussay P, Grondin Y, Foster JA, Hutzler G, Jost J, Kepes F, Michel O, Molina F, Signorini J, Stano P, Thierry AR (2011) Computing with bacterial constituents, cells and populations: from bioputing to bactoputing. Theory Biosci 130(3):211–228. doi:10.1007/s12064-010-0118-4

    PubMed Central  PubMed  Google Scholar 

  • Norris V, Engel M, Demarty M (2012a) Modelling biological systems with competitive coherence. Adv Artif Neural Syst 2012:1–20. doi:10.1155/2012/703878

    Google Scholar 

  • Norris V, Loutelier-Bourhis C, Thierry A (2012b) How did metabolism and genetic replication get married? Orig Life Evol Biosph. doi:10.1007/s11084-012-9312-3

    PubMed  Google Scholar 

  • Norris V, Menu-Bouaouiche L, Becu J-M, Legendre R, Norman R, Rosenzweig JA (2012c) Hyperstructure interactions influence the virulence of the Type 3 secretion system in yersiniae and other bacteria. Appl Microbiol Biotechnol 96(1):23–36. doi:10.1007/s00253-012-4325-4

    CAS  PubMed  Google Scholar 

  • Norris V, Amar P, Legent G, Ripoll C, Thellier M, Ovadi J (2013) Sensor potency of the moonlighting enzyme-decorated cytoskeleton. BMC Biochem 14:3. doi:10.1186/1471-2091-14-3

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ogden GB, Pratt MJ, Schaechter M (1988) The replicative origin of the E. coli chromosome binds to cell membrane only when hemi-methylated. Cell 54:127–135

    CAS  PubMed  Google Scholar 

  • Onoda T, Enokizono J, Kaya H, Oshima A, Freestone P, Norris V (2000) Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7. J Bacteriol 182:1419–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK (2004) Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science (New York) 305:1147–1150

    CAS  Google Scholar 

  • Popa R, Weber PK, Pett-Ridge J, Finzi JA, Fallon SJ, Hutcheon ID, Nealson KH, Capone DG (2007) Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J 1(4):354–360. doi:10.1038/ismej.2007.44

    CAS  PubMed  Google Scholar 

  • Potrykus K, Murphy H, Philippe N, Cashel M (2011) ppGpp is the major source of growth rate control in E. coli. Environ Microbiol 13(3):563–575. doi:10.1111/j.1462-2920.2010.02357.x

    CAS  PubMed  Google Scholar 

  • Raine DJ, Norris V (2000) Metabolic cycles and self-organised criticality. Interjournal of complex systems paper 361. http://www.interjournal.org

  • Raine DJ, Norris V (2007) Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J Theor Biol 246(1):176–185

    CAS  PubMed  Google Scholar 

  • Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647. doi:10.1146/annurev.biochem.77.083007.093039

    CAS  PubMed  Google Scholar 

  • Reshes G, Vanounou S, Fishov I, Feingold M (2008) Timing the start of division in E. coli: a single-cell study. Phys Biol 5(4):46001

    CAS  Google Scholar 

  • Rocha E, Fralick J, Vediyappan G, Danchin A, Norris V (2003) A strand-specific model for chromosome segregation in bacteria. Mol Microbiol 49:895–903

    CAS  PubMed  Google Scholar 

  • Root-Bernstein RS, Dillon PF (1997) Molecular complementarity I: the complementarity theory of the origin and evolution of life. J Theor Biol 188(4):447–479

    CAS  PubMed  Google Scholar 

  • Salthe S (1985) Evolving hierarchical systems. Columbia University Press, New York

    Google Scholar 

  • Scolari VF, Bassetti B, Sclavi B, Lagomarsino MC (2011) Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. Mol BioSyst 7(3):878–888. doi:10.1039/c0mb00213e

    CAS  PubMed  Google Scholar 

  • Segre D, Ben-Eli D, Lancet D (2000) Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. Proc Natl Acad Sci USA 97:4112–4117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekimizu K, Kornberg A (1988) Cardiolipin activation of dnaA protein, the initiation protein of replication in Escherichia coli. J Biol Chem 263(15):7131–7135

    CAS  PubMed  Google Scholar 

  • Shoval O, Sheftel H, Shinar G, Hart Y, Ramote O, Mayo A, Dekel E, Kavanagh K, Alon U (2012) Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space. Science (New York) 336(6085):1157–1160. doi:10.1126/science.1217405

    CAS  Google Scholar 

  • Simon HA (1962) The architecture of complexity. Proc Am Philos Soc 106(6):467–482

    Google Scholar 

  • Smits WK, Kuipers OP, Veening JW (2006) Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4(4):259–271

    CAS  PubMed  Google Scholar 

  • Sobetzko P, Travers A, Muskhelishvili G (2012) Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle. Proc Natl Acad Sci USA 109(2):E42–E50. doi:10.1073/pnas.1108229109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner MW, Manalis SR (2012) Direct observation of mammalian cell growth and size regulation. Nat Methods 9(9):910–912. doi:10.1038/nmeth.2133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinhauser ML, Bailey AP, Senyo SE, Guillermier C, Perlstein TS, Gould AP, Lee RT, Lechene CP (2012) Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism. Nature 481(7382):516–519. doi:10.1038/nature10734

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart MK, Cummings LA, Johnson ML, Berezow AB, Cookson BT (2011) Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc Natl Acad Sci USA 108(51):20742–20747. doi:10.1073/pnas.1108963108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terui Y, Akiyama M, Sakamoto A, Tomitori H, Yamamoto K, Ishihama A, Igarashi K, Kashiwagi K (2012) Increase in cell viability by polyamines through stimulation of the synthesis of ppGpp regulatory protein and omega protein of RNA polymerase in Escherichia coli. Int J Biochem Cell Biol 44(2):412–422. doi:10.1016/j.biocel.2011.11.017

    CAS  PubMed  Google Scholar 

  • Trouillon R, Passarelli MK, Wang J, Kurczy ME, Ewing AG (2013) Chemical analysis of single cells. Anal Chem 85(2):522–542. doi:10.1021/ac303290s

    CAS  PubMed  Google Scholar 

  • Tyler BJ, Bruening C, Rangaranjan S, Arlinghaus HF (2011) TOF-SIMS imaging of adsorbed proteins on topographically complex surfaces with Bi(3) (+) primary ions. Biointerphases 6(3):135. doi:10.1116/1.3622347

    CAS  PubMed  Google Scholar 

  • Vohradsky J, Ramsden JJ (2001) Genome resource utilization during prokaryotic development. FASEB J 15:2054–2056

    CAS  PubMed  Google Scholar 

  • Vos-Scheperkeuter GH, Witholt B (1982) Co-translational insertion of envelope proteins; theoretical considerations and implications. Ann Inst Pasteur 133A:129–138

    CAS  Google Scholar 

  • Wada A, Mikkola R, Kurland CG, Ishihama A (2000) Growth phase-coupled changes of the ribosome profile in natural isolates and laboratory strains of Escherichia coli. J Bacteriol 182:2893–2899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagner M (2009) Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. Annu Rev Microbiol 63:411–429. doi:10.1146/annurev.micro.091208.073233

    CAS  PubMed  Google Scholar 

  • Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262. doi:1471-2180-12-26210.1186/1471-2180-12-262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weart RB, Lee AH, Chien AC, Haeusser DP, Hill NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell 130(2):335–347

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woldringh CL, Nanninga N (1985) Structure of the nucleoid and cytoplasm in the intact cell. In: Nanninga N (ed) Molecular cytology of Escherichia coli. Academic Press, London, pp 161–197

    Google Scholar 

  • Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A (1999) DNA protection by stress-induced biocrystallization. Nature 400:83–85

    CAS  PubMed  Google Scholar 

  • Zhou P, Bogan JA, Welch K, Pickett SR, Wang H-J, Zaritsky A, Helmstetter CE (1997) Gene transcription and chromosome replication in Escherichia coli. J Bacteriol 179:163–169

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eric Smith for insightful comments and anonymous referees for constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vic Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, V., Nana, G.G. & Audinot, JN. New approaches to the problem of generating coherent, reproducible phenotypes. Theory Biosci. 133, 47–61 (2014). https://doi.org/10.1007/s12064-013-0185-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-013-0185-4

Keywords