Skip to main content
Log in

Richards-like two species population dynamics model

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka–Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66:1039–1091

    Article  CAS  PubMed  Google Scholar 

  • Arruda TJ, González RS, Terçariol CAS, Martinez AS (2008) Arithmetical and geometrical means of generalized logarithmic and exponential functions: generalized sum and product operators. Phys Lett A 372:2578–2582

    Article  CAS  Google Scholar 

  • Barberis L, Condat C, Roman P (2011) Vector growth universalities. Chaos Solitons Fractals 44:1100–1105

    Article  Google Scholar 

  • Bettencourt LMA, Lobo J, Helbing D, Kuhnert C, West GB (2007) Growth, innovation, scaling, and the pace of life in cities. Proc Nat Acad Sc 104:7301–7306

    Article  CAS  Google Scholar 

  • Bomze I (1995) Lotka–Volterra equation and replicator dynamics: new issues in classification. Biol Cybern 72:447–453

    Article  Google Scholar 

  • Cabella BCT, Martinez AS, Ribeiro F (2011) Data collapse, scaling functions, and analytical solutions of generalized growth models. Phys Rev E 83:061902

    Article  Google Scholar 

  • Cabella BCT, Ribeiro F, Martinez AS (2012) Effective carrying capacity and analytical solution of a particular case of the Richards-like two-species population dynamics model. Phys A 391:1281–1286

    Article  Google Scholar 

  • Cavalieri LF, Kocak H (1995) Intermittent transition between order and chaos in an insect pest population. J Theor Biol 175:231–234

    Article  Google Scholar 

  • Cross SS (1997) Fractals in Pathology. J Pathol 182:1–8

    Article  CAS  PubMed  Google Scholar 

  • dOnofrio A (2009) Fractal growth of tumors and other cellular populations: linking the mechanistic to the phenomenological modeling and vice versa. Chaos Solitons Fractals 41:875–880

  • dos Santos LS, Cabella BCT, Martinez AS (2014) Generalized Allee effect model. Theory Biosci doi:10.1007/s12064-014-0199-6

    PubMed  Google Scholar 

  • Edelstein-Keshet L (ed) (2005) Mathematical models in Biology. SIAM, Philadelphia

  • Espíndola AL, Bauch C, Cabella BCT, Martinez AS (2011) An agent-based computational model of the spread of tuberculosis. J Stat Mech 2011:P5003

    Article  Google Scholar 

  • Espíndola AL, Girardi D, Penna TJP, Bauch C, Martinez AS, Cabella BCT (2012) Exploration of the parameter space in an agent-based model of tuberculosis spread: emergence of drug resistance in developing vs developed countries. Int J Mod Phy C 23:12500461–12500469

    Article  Google Scholar 

  • Espíndola AL, Girardi D, Penna TJP, Bauch C, Cabella BCT, Martinez AS (2014) An antibiotic protocol to minimize emergence of drug-resistant tuberculosis. Phys A 400:80–92

    Article  Google Scholar 

  • Fowler CW (1981) Density dependence as related to life history strategy. Ecology 62:602–610

    Article  Google Scholar 

  • Gavrilets S, Hastings A (1995) Intermittency and transient chaos from simple frequency- dependen selection. Proc R Soc B Biol Sci 261:233–238

    Article  CAS  Google Scholar 

  • Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies. Phil Trans Royal Soc Lond A 115:153

    Google Scholar 

  • Gould H, Tobochnik J, Christian W (2006) An introduction to computer simulation methods. Addison-Wesley

  • Guiot C, Degiorgis PG, Delsanto PP, Gabriele P, Deisboeck TS (2003) Does tumor growth follow a “universal law”? J Theoretical Biol 225:147–151

    Article  PubMed  Google Scholar 

  • Harrison M (2001) Dynamical mechanism for coexistence of dispersing species. J Theoretical Biol 213:53–72

    Article  CAS  PubMed  Google Scholar 

  • Hastings A (2004) Transients: the key to long-term ecological understanding? Trends Ecol Evol 19(1):39–45

    Article  PubMed  Google Scholar 

  • Imre AR, Bogaert J (2004) The fractal dimension as a measure of the quality of habitats. Acta Biotheor 52(1):41–56

    Article  CAS  PubMed  Google Scholar 

  • Kaitala V (1999) Dynamic complexities in host-parasitoid interaction. J Theor Biol 197:331–341

    Article  PubMed  Google Scholar 

  • Kozusko F, Bourdeau M (2007) A unified model of sigmoid tumour growth based on cell proliferation and quiescence. Cell Prolif 40:824–834

    Article  CAS  PubMed  Google Scholar 

  • Lai Y (1995a) Persistence of supertransients of spatiotemporal chaotic dynamical-systems in noisy environment. Phy Lett A 200:418–422

    Article  CAS  Google Scholar 

  • Lai Y (1995b) Unpredictability of the asymptotic attractors in phasecoupled oscillators. Phys Rev E 51:2902–2908

    Article  CAS  Google Scholar 

  • Lai Y, Winslow R (1995) Geometric-properties of the chaotic saddle responsible for supertransients in spatiotemporal chaotic systems. Phys Rev Lett 74:5208–5211

    Article  CAS  PubMed  Google Scholar 

  • Martinez AS, González RS, Espíndola AL (2009) Generalized exponential function and discrete growth models. Phys A 388:2922–2930

    Article  Google Scholar 

  • Martinez AS, González RS, Terçariol CAS (2008) Continuous growth models in terms of generalized logarithm and exponential functions. Phys A 387:5679–5687

    Article  Google Scholar 

  • Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP (2002a) A mean-field theory of cellular growth. Europhy Lett 59:923–928

    Article  CAS  Google Scholar 

  • Mombach JCM, Lemke N, Bodmann BEJ, Idiart MAP (2002b) A mean-field theory of cellular growth. Europhy Lett 60:489–489

    Article  CAS  Google Scholar 

  • Murray JD (2002) Mathematical biology I: an introduction. Springer, New York

    Google Scholar 

  • Motoike IN, Adamatzky A (2005) Three-valued logic gates in reaction-diffusion excitable media. Chaos Solitons Fractals 24:107–114

    Article  Google Scholar 

  • Novozhilov AS, Berezovskaya FS, Koonin EV, Karev GP (2006) Mathematical modeling of tumor therapy with oncolytic viruses: regimes with complete tumor elimination within the framework of deterministic models. Biol Dir 1:6

    Article  Google Scholar 

  • Nowak MA, Anderson RM, McLean AR, Wolfs TF, Goudsmit J, May RM (1991) Antigenic diversity thresholds and the development of aids. Science 254:963–969

    Article  CAS  PubMed  Google Scholar 

  • Pereira MA, Martinez AS (2010) Pavlovian prisoner’s dilemma analytical results, the quasi-regular phase and spatio-temporal patterns. J Theretical Biol 265:346–358

    Article  Google Scholar 

  • Pereira MA, Martinez AS, Espíndola AL (2008) Prisoner’s dilemma in one-dimensional cellular automata: visualization of evolutionary patterns. Int J Mod Phy C 19:187–201

    Article  Google Scholar 

  • Ribeiro F (2014) A non-phenomenological model to explain population growth behaviors. http://arxiv.org/abs/1402.3676. Accessed 8 Aug 2014

  • Richards FJ (1959) A flexible growth functions for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Saether BE, Engen Matthysen SE (2002) Demographic characteristics and population dynamical patterns of solitary birds. Science 295:2070–2073

  • Savageau MA (1979) Growth of complex systems can be related to the properties of their underlying determinants. Proc Natl Acad Sci USA 76(11):5413–5417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silby RM, Barker D, Denham MC, Hone J, Pagel M (2005) On the regulation of populations of mammals, birds, fish, and insects. Science 309:607–610

    Article  Google Scholar 

  • Sibly RM, Hone J (2002) Population growth rate and its determinants: an overview. Philos Trans R Soc Lond Ser B 357:1153–1170

    Article  Google Scholar 

  • Strzalka D (2009) Connections between von Foerster coalition growth model and Tsallis \(q\)-exponential. Acta Physica Polonica B 40:41–47

    CAS  Google Scholar 

  • Strzalka D, Grabowski F (2008) Towards possible \(q\)-generalizations of the Malthus and Verhulst growth models. Phys A 387:2511–2518

    Article  Google Scholar 

  • Tokeshi M, Arakaki S (2012) Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685:2747

    Article  Google Scholar 

  • Tsallis C (1988) Possible generalization of Boltzmann-Gibbs statistics. J Stat Phy 52:479–487

    Article  Google Scholar 

  • Tsallis C (1994) What are the numbers experiments provide? Química Nova 17:468–471

    CAS  Google Scholar 

  • Tsoularis A, Wallace J (2002) Analysis of logistic growth models. Math Biosci 179:21–55

    Article  CAS  PubMed  Google Scholar 

  • von Foerster H, Mora PM, Amiot LW (1960) Doomsday: friday, 13 November, A.D. 2026. Science 132(3436):1291–1295

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (2001) A general model for ontogenetic growth. Nature 413:628–631

    Article  CAS  PubMed  Google Scholar 

  • Wodarz D (2001) Viruses as antitumor weapons: defining conditions for tumor remission. Cancer Res 61(8):3501–3507

    CAS  PubMed  Google Scholar 

  • Wodarz D, Komarova N (2005) Computational biology of cancer: lecture notes and mathematical modeling. Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Yeomans JM (1992) Statistical mechanics of phase transitions. Oxford Science Publications.

Download references

Acknowledgments

The authors acknowledges support from CNPq (305738/2010-0, 476722/2010-1 and 127151/2012-5) and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenno Caetano Troca Cabella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, F., Cabella, B.C.T. & Martinez, A.S. Richards-like two species population dynamics model. Theory Biosci. 133, 135–143 (2014). https://doi.org/10.1007/s12064-014-0205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-014-0205-z

Keywords

Navigation