Abstract
Gene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics. Predominant use of meta-heuristic algorithms in training neural models has proved its excellence. Considering these facts, this paper is organized to survey neural modelling schemes of GRN and the efficacy of meta-heuristic algorithms towards parameter learning (i.e. weighting connections) within the model. This survey paper renders two different structure-related approaches to infer GRN which are global structure approach and substructure approach. It also describes two neural modelling schemes, such as artificial neural network/recurrent neural network based modelling and neuro-fuzzy modelling. The meta-heuristic algorithms applied so far to learn the structure and parameters of neutrally modelled GRN have been reviewed here.
Similar content being viewed by others
References
Aarts E, Korst J, Michiels W (2005) Simulated annealing. In: Search methodology. Springer, New York, pp 187–210. doi:10.1007/0-387-28356-0_7
Abbass HA (2001) MBO: marriage in honey bees optimization—a haplometrosis polygynous swarming approach. In: Proceedings of congress on evolutionary computation, pp 207–214
Agnelli L, Forcato M, Ferrari F et al (2011) The reconstruction of transcriptional networks reveals critical genes with implications for clinical outcome of multiple myeloma. Clin Cancer Res 17(23):7402–7412. doi:10.1158/1078-0432.CCR-11-0596
Antoniadis A, Lambert-Lacroix S, Leblanc F (2003) Effective dimension reduction methods for tumour classification using gene expression data. Bioinformatics (Oxford Journal) 19(5):563–570. doi:10.1093/bioinformatics/btg062
Bang-Jensen J, Gutin G (2007) Digraphs: theory, algorithms and applications, 1st edn. Springer-Verlag, Berlin
Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512. doi:10.1126/science.286.5439.509
Beasley D, Bull DR, Martin RR (1993a) An overview of genetic algorithms: part 1, fundamental. Univ Comput 15(2):58–69
Beasley D, Bull DR, Martin RR (1993b) An overview of genetic algorithms: part 2, research topics. Univ Comput 15(4):170–181
Benuskova L, Kasabov N (2008) Modelling brain dynamics using computational neurogenetic approach. Cogn Neurodyn 2(4):319–334. doi:10.1007/s11571-008-9061-1
Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edn. WH Freeman, New York
Bertsimas D, Brown DB, Caramanis C (2001) Theory and applications of robust optimization. SIAM Rev 53(3):464–501. doi:10.1137/080734510
Biswas S, Acharyya S (2014a) Gene expression profiling by estimating parameters of gene regulatory network using simulated annealing: a comparative study. In: Proceedings of IEEE international advance computing conference pp 56–61
Biswas S, Acharyya S (2014b) Gene expression profiling by estimating parameters of gene regulatory network using meta-heuristics: a comparative study. In: Proceedings of international conference on signal processing and integrated networks (SPIN), pp 264–268
Biswas S, Acharyya S (2014c) Parameter estimation of gene regulatory network using honey bee mating optimization. In: Proceedings of 4th international conference on emerging applications of information technology, pp 3–8
Blum C, Roli A (2003) Meta-heuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35(3):268–308. doi:10.1145/937503.937505
Borate BR, Chesler EJ, Langston MA, Saxton AM, Voy BH (2009) Comparison of threshold selection methods for microarray gene co-expression matrices. BMC Res Notes 2(240):4. doi:10.1186/1756-0500-2-240
Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization meta-heuristics. Inf Sci 237:82–117
Bucchianico AD (2008) Coefficient of determination (R2). In: Encyclopaedia of statistics in quality and reliability. Wiley. doi:10.1002/9780470061572.eqr173
Butcher JC (2008) Numerical methods for ordinary differential equations, 2nd edn. Wiley. doi:10.1002/9780470753767
Chan ZSH, Havukkala I, Jain V, Hu Y, Kasabov N (2008) Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data. Appl Soft Comput 8(3):1189–1199
Choi JK, Yu U, Yoo OJ, Kim S (2005) Differential Co-expression analysis using microarray data and its application to human cancer. Bioinformatics 21(24):4348–4355. doi:10.1093/bioinformatics/bti722
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Cussat-Blanc S, Harrington K, Pollack J (2015) Gene regulatory network evolution through augmenting topologies. IEEE Trans Evolut Comput 19(6):823–837
D’haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co expression clustering to reverse engineering. Bioinformatics 16(8):707–726. doi:10.1093/bioinformatics/16.8.707
Das P, Konar A, Nasipuri M, Rakshit P (2011) A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using artificial bee colony optimization algorithm. In: Proceedings of international conference on recent trends in information systems, pp 42–47
Datta A, Pal R, Dougherty ER (2006) Intervention in probabilistic gene regulatory networks. Curr Bioinform 1(2):167–184. doi:10.1093/bioinformatics/btt242
Datta D, Sinha Choudhuri S, Konar A, Nagar A, Das S (2009) A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution. In: Proceeding of IEEE congress on evolutionary computation, pp 2900–2906
Davidson EH (2006) The regulatory genome: gene regulatory networks in development and evolution, 2nd edn. Academic Press Inc, Cambridge
Dillies MA, Rau A, Aubert J et al (2012) A comprehensive evaluation of normalization methods for Illumina high-throughput rna sequencing data analysis. Brief Bioinf 14(6):671–683. doi:10.1093/bib/bbs046
Dorigo M (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern Part B 26(1):29–41
Eisen MB, Brown PO (1999) DNA arrays for analysis of gene expression. Methods Enzymol 303:179–205
Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549
Glover F (1990) Tabu search: a tutorial. Interfaces 20(4):74–94. doi:10.1287/inte.20.4.74
Glover F, Kochenberger GA (2003) Handbook of meta-heuristics, 1st edn. Kluwer Academic Publishers, New York
Goldberg DE (1983) Computer-aided pipeline operation Using genetic algorithms and rule learning. Doctoral Dissertation, University of Michigan. doi:10.1007/BF01198148
Goldberg DE, Deb K (1989) Genetic algorithms in search, optimization and machine learning, 1st edn. Addison-Wesley Publishing Company Inc, Boston, MA
Gudise VG, Venayagamoorthy GK (2003) Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In: Proceedings of the IEEE swarm intelligence symposium, pp 110–117
Hache H, Lehrach H, Herwig R (2009) Reverse engineering of gene regulatory networks: a comparative study. EURASIP J Bioinf Syst Biol 2009:12. doi:10.1155/2009/617281
Haddad OB, Afshar A, Marin MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manage 20(5):661–680. doi:10.1007/s11269-005-9001-3
Hagan MT, Demuth HB, Beale MH, Jesas OD (1996) Neural network design, 1st edn. PWS Publishing Company, Boston, MA
He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531
Heckerman D, Geiger D, Chickering DM (1995) Learning Bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3):197–243
Hegland M, Burden C, Santoso L, MacNamara S, Booth H (2007) A solver for the stochastic master equation applied to gene regulatory networks. J Comput Appl Math 205(2):708–724. doi:10.1016/j.cam.2006.02.053
Hemberg M, Barahona M (2007) Perfect sampling of the master equation for gene regulatory networks. Biophys J 93(2):401–410. doi:10.1529/biophysj.106.099390
Henderson D, Jacobson SH, Johnson AW (2003) The theory and practice of simulated annealing. In: Handbook of metaheuristics. Springer, New York, pp 287–319. doi:10.1007/0-306-48056-5_10
Herrmann F, Groß A, Zhou D, Kestler HA, Kuhl M (2012) A boolean model of the cardiac gene regulatory network determining first and second heart field identity. PLoS One 7(10):1–10. doi:10.1371/journal.pone.0046798
Holland JH (1975) Natural and artificial systems, 1st edn. University of Michigan Press, Michigan
Hopfield JJ (1988) Artificial neural networks. IEEE Circuits Devices Magazine 4(5):3–10
Hu X, Maglia A, Wunsch II DC (2005) A general recurrent neural network approach to model genetic regulatory networks. In: Proceedings of the 2005 IEEE 27th annual conference on engineering in medicine and biology, pp 4735–4738
Jaeger H (2002) A tutorial on training recurrent neural networks, covering BPTT, RTRL, EKF and the echo state network approach. GMD Report 159, German National Research Centre for Information Technology
Jang JSR, Sun CT, Mizutani E (1997) Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence, 1st edn. Prentice Hall, Upper Saddle River, NJ
Jong HD (2002) Modelling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1):67–103. doi:10.1089/10665270252833208
Jong HD, Geiselmann J (2005) Modelling and simulation of genetic regulatory networks by ordinary differential equations. In: Genomic signal processing and statistics. Hindwai Publishing Corporation, New York, pp 201–239
Karaboga D (2005) An idea based on honeybee swarm for numerical optimization. Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department
Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. doi:10.1007/978-3-642-16388-3_22
Karlik B (2013) Soft computing methods in bioinformatics: a comprehensive review. Math Comput Appl 18(3):176–197
Kauffman S, Peterson C, Samuelsson B, Troein C (2003) Random Boolean network models and the yeast transcriptional network. Proc Natl Acad Sci 100(25):14796–14799. doi:10.1073/pnas.2036429100
Keedwell E, Narayanan A (2005) Discovering gene networks with a neural-genetic hybrid. IEEE/ACM Trans Comput Biol Bioinf 2(3):231–242
Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, vol 4, pp 1942–1948
Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: IEEE international conference on computational cybernetics and simulation, vol 5, pp 4104–4108
Kennedy N, Mizeranschi A, Thompson P (2013) Reverse engineering of gene regulation models from multi-condition experiments. In: Proceedings of IEEE symposium on computational intelligence in bioinformatics and computational biology, pp 112–119
Kentzoglanakis K, Poole M (2012) A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures. IEEE/ACM Trans Comput Biol Bioinf 9(2):358–371. doi:10.1109/TCBB.2011.87
Kirkpatrick S, Gelatt CD, Vecchi MP Jr (1983) Optimization by simulated annealing. Science 220(4598):672–681
Kitano H (2002a) Computational systems biology. Nature 420(6912):206–210. doi:10.1038/nature01254
Kitano H (2002b) Systems biology: a brief overview. Science 295(5562):1662–1664. doi:10.1126/science.1069492
Kobiler O, Rokney A, Oppenheim AB (2007) Phage Lambda CIII: a protease inhibitor regulating the lysis-lysogeny decision. FEBS J 275(19):4767–4772. doi:10.1111/j.1742-4658.2008.06610.x
Koski TJT, Noble JM (2012) A review of bayesian networks and structure learning. Math Appl 40(1):53–103. doi:10.14708/ma.v40i1.278
Lee WP, Tzou WS (2009) Computational methods for discovering gene networks from expression data. Briefings In: Bioinformatics. 10(4):408–423. doi:10.1093/bib/bbp028
Lewin B (2003) Gene VIII, 8th edn. Oxford University Press, Oxford
Liang AC, Wang X (2008) Gene regulatory network reconstruction using conditional mutual information. EURASIP J Bioinf Syst Biol 2008:14. doi:10.1155/2008/253894
Lipshutz RJ, Fodor SP, Gingeras TR et al (1999) High density synthetic oligonucleotide arrays. Nat Genet 21(1 Suppl):20–24
Liu G, Liu L, Liu C et al (2011) Combination of neuro-fuzzy network models with biological knowledge for reconstructing gene regulatory networks. J Bionic Eng 8(1):98–106
Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405(6788):827–836. doi:10.1038/35015701
Lodish H, Berk A, Kaiser CA et al (2007) Molecular cell biology, 6th edn. WH Freeman, New York
Luo F, Yang Y, Zhong J et al (2007) Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinf 8(299):17. doi:10.1186/1471-2105-8-299
Maetschke SR, Ragan MA (2014) Characterizing cancer subtypes as attractors of Hopfield networks. Bioinformatics 30(9):1–7. doi:10.1093/bioinformatics/btt773
Mandal M, Mukhopadhyay A (2012) A multiobjective PSO-based approach for identifying non-redundant gene markers from microarray gene expression data. In: IEEE international conference of computing, communication and application (ICCCA), IEEE Press, pp 1–6
Mandal S, Saha G, Pal RK (2015) Inference of gene regulatory networks with neural-cuckoo hybrid. In: Advanced computing and systems for security. Springer, New Delhi, pp 87–99. doi:10.1007/978-81-322-2650-5_6
Maraziotis IA, Dragomir A, Thanos D (2010) Gene regulatory networks modelling using a dynamic evolutionary hybrid. BMC Bioinf 11(140):17. doi:10.1186/1471-2105-11-140
Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet 9:387–402. doi:10.1146/annurev.genom.9.081307.164359
Mendel JM (1995) Fuzzy logic systems for engineering: a tutorial. Proc IEEE 83(3):345–377
Mitra S, Hayashi Y (2006) Bioinformatics with soft computing. IEEE Trans Syst Man Cybern Part C Appl Rev 36(5):616–635
Mitra S, Das R, Hayashi Y (2011) Genetic networks and soft computing. IEEE/ACM Trans Comput Biol Bioinf 8(1):94–107
Noman N, Palafox L, Iba H (2012) Reconstruction of gene regulatory networks from gene expression data using decoupled recurrent neural network model. In: Natural computing and beyond, proceedings in information and communications technology, vol 6, pp 93–103. doi:10.1007/978-4-431-54394-7_8
Perrin BE, Ralaivola L, Mazurie A, Bottani S, Jacques Mallet J, d’Alché–Buc F (2003) Gene networks inference using dynamic Bayesian networks. Bioinformatics 19(2):ii138–ii148. doi:10.1093/bioinformatics/btg1071
Pierce BA (2010) Genetics: a conceptual approach. 4th edn. WH Freeman, New York
Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS (2006) Regulation of the insulin gene by glucose and fatty acids. J Nutr 136(4):873–876
Qiu P, Gentles AJ, Plevritis SK (2009) Fast calculation of pairwise mutual information for gene regulatory network reconstruction. Comput Methods Prog Biomed 94(2):177–180. doi:10.1016/j.cmpb.2008.11.003
Quackenbush J (2002) microarray data normalization and transformation. Nat Genet Suppl 32:496–501. doi:10.1038/ng1032
Reinitz J, Sharp DH (1995) Mechanism of eve stripe formation. Mech Dev 49(1–2):133–158. doi:10.1016/0925-4773(94)00310-J
Ristevski B (2013) A survey of models for inference of gene regulatory networks. Nonlinear Anal Model Contr 18(4):444–465. doi:10.1002/cplx.21585
Ruan J, Dean AK, Zhang W (2010) A general co-expression network-based approach to gene expression analysis: comparison and applications. BMC Syst Biol 4(8):21. doi:10.1186/1752-0509-4-8
Rubiolo M, Milone D, Stegmayer G (2015) Mining gene regulatory networks by neural modelling of expression time series. IEEE/ACM transactions on computational biology and bioinformatics. Advance online publication. doi:10.1109/TCBB.2015.2420551
Sastry K, Goldberg D, Kendall G (2005) Genetic algorithms. In: Search methodologies: introductory tutorials in optimization and decision support system, 2nd edn. Springer, New York, U.S.A, pp 97–125. doi:10.1007/978-1-4614-6940-7
Schlitt T, Brazma A (2007) Current approaches to gene regulatory network modelling. BMC Bioinf 8(6):22. doi:10.1186/1471-2105-8-S6-S9
Serraa R, Villania M, Damiania C, Graudenzia A, Colaccib A, Kauffman SA (2007) Interacting random boolean networks. In: Proceedings of the European conference on complex systems (ECCS 07), p 15. doi:10.1016/j.jtbi.2007.01.012
Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145. doi:10.1038/nbt1486
Shi Y, Eberhart R (1998) A modified particle swarm optimizer. Evolut Comput Proc. doi:10.4236/ns.2009.12019
Shmulevich I, Dougherty ER, Zhang W (2002a) From boolean to probabilistic boolean networks as models of genetic regulatory networks. Proc IEEE 90(11):1778–1792
Shmulevich I, Dougherty ER, Kim S, Zhang W (2002b) Probabilistic boolean networks: a rule based uncertainty model for gene regulatory network. Bioinformatics 18(2):261–274. doi:10.1093/bioinformatics/18.2.261
Sima C, Hua J, Jung S (2009) Inference of gene regulatory network using time series data: a survey. Curr Genomics 10:416–429
Sîrbu A, Ruskin HJ, Crane M (2010) Comparison of evolutionary algorithms in gene regulatory network model inference. BMC Bioinformatics 11(59):20
Srinivas M, Patnaik LM (1994) Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans Syst Man Cybern 24(4):656–667
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. doi:10.1023/A:1008202821328
Teo J, Abbass HA (2001) An annealing approach to the mating-flight trajectories in the marriage in honey bees optimization algorithm. Technical Report CS04/01 School of Computer Science, University of New South Wales
Thomas SA, Jin Y (2014) Reconstructing biological gene regulatory networks: where optimization meets big data. Evol Intel 7(1):29–47. doi:10.1007/s12065-013-0098-7
Vineetha S, Bhat CCS, Idicula SM (2012) Gene regulatory network from microarray data of colon cancer patients using TSK-type recurrent neural fuzzy network. Gene 506(2):408–416. doi:10.1016/j.gene.2012.06.042
Vohradsky J (2001) Neural model of the genetic network. J Biol Chem 276(39):36168–36173. doi:10.1074/jbc.M104391200
Vu TT, Vohradsky J (2009) Inference of active transcriptional networks by integration of gene expression. Genomics 93(5):426–433
Wahde M, Hertz J (2000) Coarse-grained reverse engineering of genetic regulatory networks. Bio Systems 55(1–3):129–136
Wahde M, Hertz J (2001) Modelling genetic regulatory dynamics in neural development. J Comput Biol 8(4):429–442. doi:10.1089/106652701752236223
Weaver DC, Workman CT, Stormo GD (1999) Modelling regulatory networks with weight matrices. Pacific symposium on biocomputing, pp 112–123, PMID:10380190
Werbos PJ (1990) Back-propagation through time: what it does and how to do it. Proc IEEE 78(10):1550–1560
Werhli AV, Husmeier D (2007) Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 6(1):1–45
Xiao Y (2009) A tutorial on analysis and simulation of boolean gene regulatory network models. Curr Genomics 10(7):511–525. doi:10.2174/138920209789208237
Xu R, Wunsch II DC (2005) Gene regulatory networks inference with recurrent neural network models. In: Proceedings of international joint conference on neural networks, pp 286–291
Xu R, Ganesh K, Venayagamoorthy GK, Wunsch DC II (2007a) Modelling of gene regulatory networks with hybrid differential evolution and particle swarm optimization. Neural Netw 20(8):917–927. doi:10.1016/j.neunet.2007.07.002
Xu R, Wunsch Ii D, Frank R (2007b) Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization. IEEE/ACM Trans Comput Biol Bioinf 4(4):681–692. doi:10.1109/TCBB.2007.1057
Yang B, Chen Y, Jiang M (2013) Reverse engineering of gene regulatory networks using flexible neural tree models. Neurocomputing 99:458–466
Yang Y, Wang Y, Zhou K, Hong A (2014) Constructing regulatory networks to identify biomarkers for insulin resistance. Gene 539:68–74. doi:10.1016/j.gene.2014.01.061
Yao X (1999) Evolving artificial neural network. Proc IEEE 87(9):1423–1447
Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20(18):3594–3603. doi:10.1093/bioinformatics/bth448
Yuan C, Malone B, Wu X (2011) Learning optimal bayesian networks using a* search. In: Proceedings of the 22nd international joint conference on artificial intelligence, pp 2186–2191. doi:10.5591/978-1-57735-516-8/IJCAI11-364
Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. doi:10.1016/S0019-9958(65)90241-X
Zadeh LA (1996) Fuzzy logic = computing with words. IEEE Trans Fuzzy Syst 4(2):103–111
Zhang Y, Xuan J, de los Reyes BG, Clarke R, Ressom HW (2009) Reverse engineering module networks by PSO-RNN hybrid modelling. BMC Genomics 10_Suppl 1(S15):10
Zhang X, Zhao XM, He K et al (2012) Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information. Bioinformatics 28(1):98–104. doi:10.1093/bioinformatics/btr626
Acknowledgments
We are thankful to TEQIP Phase II at West Bengal University of Technology for funding our research.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Biswas, S., Acharyya, S. Neural model of gene regulatory network: a survey on supportive meta-heuristics. Theory Biosci. 135, 1–19 (2016). https://doi.org/10.1007/s12064-016-0224-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-016-0224-z