Abstract
In his Generelle Morphologie der Organismen (1866), 150 years ago, Ernst Haeckel (1834–1919) combined developmental patterns in animals with the concept of organismic evolution, and 50 years ago, a new era of plant research started when focus shifted from crop species (sunflower, maize etc.) to thale cress (Arabidopsis thaliana) as a model organism. In this contribution, we outline the general principles of developmental evolutionary biology sensu Haeckel and describe the evolutionary genome-to-morphology-plant hormone auxin (IAA, indole-3-acetic acid)-circuit with reference to other phytohormones and a focus on land plants (embryophytes) plus associated epiphytic microbes. Our primary conclusion is that a system-wide approach is required to truly understand the ontogeny of any organism, because development proceeds according to signal pathways that integrate and respond to external as well as internal stimuli. We also discuss IAA-regulated embryology in A. thaliana and epigenetic phenomena in the gametophyte development, and outline how these processes are connected to the seminal work of Ernst Haeckel.
Similar content being viewed by others
References
Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66
Breidbach O (1998) Monismus um 1900—Wissenschaftspraxis oder Weltanschauung? Stapfia 56:289–316
Chandler JW (2016) Auxin response factors. Plant Cell Environ 39:1014–1028
Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439
Cooke TJ, Poli D, Sztein AE, Cohen JD (2002) Evolutionary patterns in auxin action. Plant Mol Biol 49:319–338
Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London
Darwin C (1860) Über die Entstehung der Arten im Thier- und Pflanzenreich durch natürliche Züchtung oder Erhaltung der vervollkommneten Rassen im Kampfe um’s Daseyn (translated by H. G. Bronn). E. Schweizerbart’sche Verlagshandlung und Druckerei, Stuttgart
Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilized by insects, and on the good effects of intercrossing. John Murray, London
De Smet I, Jürgens G (2007) Patterning the axis in plants—auxin in control. Curr Opin Genet Dev 17:337–343
Deng Z, Xu S, Chalkley RJ, Oses-Prieto JA, Burlingame AL, Wang Z-Y, Kutschera U (2012) Rapid auxin-mediated changes in the proteome of the epidermal cells in rye coleoptiles: implications for the initiation of growth. Plant Biol 14:420–427
Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek 106:85–125
Feng M, Kim J-Y (2015) Revisiting apoplastic auxin signaling mediated by auxin binding protein 1. Mol Cell 38:829–835
Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jügens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153
Fujita T, Sakaguchi H, Hiwatashi Y, Wagstaff SJ, Ito M, Deguchi H, Sato T, Hasebe M (2008) Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Evol Dev 10:176–186
Gao Y, Zhang Y, Zhang D, Dai X, Estelle M, Zhao Y (2015) Auxin binding protein 1 (ABP1) is not required for either auxin signaling or Arabidopsis development. Proc Natl Acad Sci USA 112:2275–2280
Goodrich J (1998) Plant development: medea’s maternal instinct. Curr Biol 8:480–484
Grones P, Friml J (2015) Auxin transporters and binding proteins at a glance. J Cell Sci 128:1–7
Haeckel E (1866) Generelle Morphologie der Organismen. Allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformierte Descendenz-Theorie, vols I and II. Verlag Georg Reimer, Berlin
Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668
Hartwig T, Wang Z-Y (2015) The molecular circuit of steroid signalling in plants. Essays Biochem 58:71–82
Hayashi K, Tan X, Zheng N, Hatate T, Kimura Y, Kepinski S, Nozaki H (2008) Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc Natl Acad Sci USA 105:5632–5637
Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theißen G (2002) Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol Biol Evol 19:801–814
Hornschuh M, Grotha R, Kutschera U (2006) Moss-associated methylobacteria as phytosymbionts: an experimental study. Naturwissenschaften 93:480–486
Hossfeld U (2010) Ernst Haeckel. Orange Press, Freiburg
Hossfeld U (2016) Geschichte der biologischen Anthropologie, 2nd edn. Franz Steiner Verlag, Stuttgart
Hossfeld U, Olsson L (2003) The road from Haeckel: the Jena tradition in evolutionary morpohology and the origins of “Evo-Devo”. Biol Philos 18:285–307
Jin Q, Scherp P, Heimann K, Hasenstein KH (2007) Auxin and cytoskeletal organization in algae. Cell Biol Int 32:542–545
Johri MM (2004) Possible origin of hormonal regulation in green plants. Proc Indian Nat Sci Acad B 70:335–465
Johri MM (2008) Hormonal regulation in green plant lineage families. Physiol Mol Biol Plants 14:23–38
Kim TW, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinase to transcription factors. Annu Rev Plant Biol 61:681–704
Klaembt D, Knauth B, Dittmann I (1992) Auxin dependent growth of rhizoids of Chara globularis. Physiol Plant 85:537–540
Kohler C, Hennig L, Bouveret R, Gheyselinck J, Grossniklaus U, Gruissem W (2003) Arabidopsis MSI1 is a component of the MEA/FIE Polycomb group complex and required for seed development. EMBO J 22:4804–4814
Koornneef M, Meinke D (2010) The development of Arabidopsis as a model plant. Plant J 61:909–921
Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78
Kutschera U, Briggs WR (2009) From Charles Darwin’s botanical country-house studies to modern plant biology. Plant Biol 11:785–795
Kutschera U, Briggs WR (2013) Seedling development in buckwheat and the discovery of the photomorphogenic shade-avoidance response. Plant Biol 15:931–940
Kutschera U, Briggs WR (2016) Phototropic solar tracking in sunflower plants: an integrative perspective. Ann Bot 117:1–8
Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409
Kutschera U, Niklas KJ (2009) Evolutionary plant physiology: Charles Darwin’s forgotten synthesis. Naturwissenschaften 96:1339–1354
Kutschera U, Wang Z-Y (2012) Brassinosteroid action in flowering plants: a Darwinian perspective. J Exp Bot 63:3511–3522
Kutschera U, Wang Z-Y (2016) Growth-limiting proteins in maize coleoptiles and the auxin-brassinosteroid hypothesis of mesocotyl elongation. Protoplasma 253:3–14
Kutschera U, Deng Z, Oses-Prieto JA, Burlingame AL, Wang Z-Y (2010) Cessation of coleoptile elongation and loss of auxin sensitivity in developing rye seedlings. A quantitative proteomic analysis. Plant Signal Behav 5:509–517
Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124
Langdale JA (2008) Evolution of developmental mechanisms in plants. Curr Opin Genet Dev 18:368–373
Lau S, Shao N, Bock R, Jürgens G, De Smet I (2009) Auxin signaling in algal lineages: fact or myth? Trends Plant Sci 14:1360–1385
Lau S, Slane D, Herud O, Kong J, Jürgens G (2012) Early embryogenesis in flowering plants: setting up the basic body pattern. Annu Rev Plant Biol 63:483–506
Le Bail A, Billoud B, Kowalczyk N, Kowalczyk M, Gicquel M, Le Panse S, Stewart S, Scornet D, Cock JM, Ljung K, Charrier B (2010) Auxin metabolism and function in the multicellular brown alga Ectocarpus siliculosus. Plant Physiol 153:128–144
Liepman AH, Wightman R, Geshi N et al (2010) Arabidopsis—a powerful model system for plant cell wall research. Plant J 61:1107–1121
Ludwig-Müller J (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. J Exp Bot 62:1757–1773
Mosquna A, Katz A, Decler EL, Rensing SA, Reski R, Ohad N (2009) Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136:2433–2444
Muto H, Watahiki M, Nakamoto D, Kinjo M, Yamamoto KT (2007) Specificity and similarity of functions of the Aux/IAA genes in auxin signaling of Arabidopsis revealed by promoter-exchange experiments among MSG2/IAA19, AXR2/IAA7, and SLR/IAA14. Plant Physiol 144:187–196
Nekrasov M, Wild B, Muller J (2005) Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6:348–353
Niklas KJ (1992) Plant biomechanics. The University of Chicago Press, Chicago
Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago
Niklas KJ (2004) The cell walls that bind the tree of life. Bioscience 54:841–851
Niklas KJ, Kutschera U (2009) The evolutionary development of plant body plans. Funct Plant Biol 36:682–695
Niklas KJ, Kutschera U (2010) The evolution of the land plant life cycle. New Phytol 185:27–41
Niklas KJ, Kutschera U (2012) Plant development, auxin, and the subsystem incompleteness theorem. Front Plant Sci 3(37):1–11
Niklas KJ, Cobb ED, Kutschera U (2014) Did meiosis evolve before sex and the evolution of eukaryotic life cycles? Bioessays 36:1091–1101
Niklas KJ, Cobb ED, Kutschera U (2016) Haeckel’s biogenetic law and the land plant phylotypic stage. Bioscience 66:510–519
Paponov IA, Paponov MT, Teale W, Menges M, Chakrabortee S, Murray JAH, Palme K (2008) Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant 1:321–337
Pils B, Heyl A (2009) Unraveling the evolution of cytokinin signaling. Plant Physiol 151:782–791
Poli DB, Jacobs M, Cooke TJ (2003) Auxin regulation of axial growth in bryophyte sporophytes: its potential significance for the evolution of early land plants. Am J Bot 90:1405–1415
Provart NJ, Alonso J, Assmann SM et al (2016) 50 years of Arabidopsis research: highlights and future directions. New Phytol 209:921–944
Rensing SA (2016) (Why) does evolution favour embryogenesis? Trends Plant Sci (in press)
Rensing SA, Land D, Zimmer AD et al (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319:64–69
Ross JJ, Reid JB (2010) Evolution of growth-promoting plant hormones. Funct Plant Biol 37:795–805
Shin R, Burch AY, Huppert KA, Tiwari SB, Murphy AS, Guilfoyle TJ, Schachtman DP (2007) The Arabidopsis transcription factor MYB77 modulates auxin signal transcription. Plant Cell 19:2440–2453
Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in micobial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448
Tanabe Y, Hasebe M, Sekimoto H, Nishiyama T, Kitani M, Henschel K, Munster T, Theißen G, Nozaki H, Ito M (2005) Characterization of MADS-box genes in charophycean green algae and its implications for the evolution of MADS-box genes. Proc Natl Acad Sci USA 102:2436–2441
Tanahashi T, Sumikawa N, Kato M, Hasebe M (2005) Diversification of gene function: homologs of the floral regulator FLO/LFY control the first zygotic division in the moss Physcomitrella patens. Development 132:1727–1736
Tanimoto M, Jowett J, Stirnberg P, Rouse D, Leyser O (2007) pa1–1 partially suppresses gain-of-function mutations in Arabidopsis AXR3/IAA17. BMC Plant Biol 7:20
Tao Y, Ferrer J-L, Ljung K, Pojer F et al (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176
Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Cell Biol 7:847–859
Vieten A, Sauer M, Brewer PB, Friml J (2007) Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci 12:160–168
Wang B, Chu J, Yu T, Xu Q, Sun X, Yuan J, Xiong G, Wang G, Wang Y, Li J (2015) Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA 112:4821–4826
Weijers D, Schlereth A, Ehrismann JS, Schwank G, Kientz M, Jürgens G (2006) Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev Cell Biol 10:265–270
Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707–735
Yin X, Struik PC (2010) Modeling the crop: from systems dynamic to systems biology. J Exp Bot 61:2171–2183
Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64
Zhao Y (2012) Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid. Mol Plant 5:334–338
Acknowledgments
The cooperation of the authors was supported by the Alexander von Humboldt-Stiftung (Bonn, Germany) (AvH-Fellowship Stanford 2014/15 to UK).
Author information
Authors and Affiliations
Corresponding author
Additional information
This article forms part of a special issue of Theory in Biosciences in commemoration of Olaf Breidbach.
Dedicated to the memory of Olaf Breidbach (1957–2014).
Rights and permissions
About this article
Cite this article
Kutschera, U., Niklas, K.J. The evolution of the plant genome-to-morphology auxin circuit. Theory Biosci. 135, 175–186 (2016). https://doi.org/10.1007/s12064-016-0231-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12064-016-0231-0